MahdiMasoon
commited on
Commit
·
40b78d8
1
Parent(s):
d578b31
test lower gamma
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +11 -11
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 158.97 +/- 94.08
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f49bc85bb80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f49bc85bc10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f49bc85bca0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f49bc85bd30>", "_build": "<function ActorCriticPolicy._build at 0x7f49bc85bdc0>", "forward": "<function ActorCriticPolicy.forward at 0x7f49bc85be50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f49bc85bee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f49bc85bf70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f49bc85e040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f49bc85e0d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f49bc85e160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f49bc85e1f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f49bc7df180>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 106496, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678822702884961000, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOYCYD75UpE/Bf01PiqFFL+TzYs+5hOpPQAAAAAAAAAAWlizPYH5rz1GBSQ+wlegvz9UoL0GM7y7AAAAAAAAAABmwqq7rUtePv4Nzr2mJaO/aVptPo+nPT4AAAAAAAAAALJNkb4bklY/Tn04v99JX7/JBks+6snIPAAAAAAAAAAA7QvSvk2tFD8uAmO/75VRvzubSj5xbSe+AAAAAAAAAACquZ8+22wBP1mHOD98Jo2/sAmjvjqyRL4AAAAAAAAAAF1vgL4i5Jo/BmUnv1rHAL9ZgAw+MkRWvQAAAAAAAAAAc1P0Paqnoj8bkg4/wfLPvnwrcb6irhO+AAAAAAAAAACzdRC+N9CwP0ZfTL3k5Qa/vuK5vjK0ub4AAAAAAAAAAAB0BbxdMbs/PMGQvcYjqz0rHLk8zdXtPQAAAAAAAAAApcEvv45dgL5IPgk9ZbmZvNBNGb1GGIC9AAAAAAAAgD9Dm4o+/couPxsePT+RPlm/M++WvhV+Gb4AAAAAAAAAAPP73r0GqbE/1espvv62i77JyYm+Ruz7vQAAAAAAAAAAoMgDPsIoiD/DT+s+6r0ov0Wm872+nwa+AAAAAAAAAAAaKvA9/oCoP1qBtj4fafG+0IFqu46zkDwAAAAAAAAAAIqDvz7xVki9QrvVvrF4or0C2dA/Cls3PwAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0649599999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfsUaLnJwW8CUhpRSlIwBbJRLWYwBdJRHQFCcQ40dilV1fZQoaAZoCWgPQwjtnGaBdjxkwJSGlFKUaBVLi2gWR0BQne0G/vfCdX2UKGgGaAloD0MIJCh+jLkeVcCUhpRSlGgVS2loFkdAUJ4kJKJ2uHV9lChoBmgJaA9DCAOy17s/AkXAlIaUUpRoFUteaBZHQFCehcJMQEp1fZQoaAZoCWgPQwhHV+nuOh98wJSGlFKUaBVLkWgWR0BQnwLqlgtwdX2UKGgGaAloD0MIQUerWhJTc8CUhpRSlGgVS2RoFkdAUKA9A5aNdnV9lChoBmgJaA9DCIyFIXJ6RnHAlIaUUpRoFUuHaBZHQFCf/h2nsLR1fZQoaAZoCWgPQwg9murJ/ENYwJSGlFKUaBVLQ2gWR0BQo2cnVoYfdX2UKGgGaAloD0MIQpdw6C03UsCUhpRSlGgVS0loFkdAUKMuHvc8DHV9lChoBmgJaA9DCG8MAcAxYGvAlIaUUpRoFUt7aBZHQFClY5ksjFB1fZQoaAZoCWgPQwgyrOKNzHZowJSGlFKUaBVLVWgWR0BQpsNQTEiudX2UKGgGaAloD0MI2ZYBZyl8UMCUhpRSlGgVS0doFkdAUKva0x/NJXV9lChoBmgJaA9DCDqRYKqZ2WHAlIaUUpRoFUt0aBZHQFCry2QXAM51fZQoaAZoCWgPQwjds67RsvBwwJSGlFKUaBVLUWgWR0BQrNs7+1jRdX2UKGgGaAloD0MI78uZ7QqoVsCUhpRSlGgVS0loFkdAUK8DPnjhk3V9lChoBmgJaA9DCAzmr5C54lTAlIaUUpRoFUtIaBZHQFCvoxHoX9B1fZQoaAZoCWgPQwgV5dL4BXtxwJSGlFKUaBVLb2gWR0BQsYPsiSq3dX2UKGgGaAloD0MIRwN4CyTEW8CUhpRSlGgVS15oFkdAULPDsMRYinV9lChoBmgJaA9DCNKsbB/yMFrAlIaUUpRoFUs+aBZHQFCz/e+Eh7p1fZQoaAZoCWgPQwjggmxZvqRZwJSGlFKUaBVLQGgWR0BQtcstkFwDdX2UKGgGaAloD0MI7UeKyDB7YcCUhpRSlGgVS3RoFkdAULd17pmmL3V9lChoBmgJaA9DCAJLrmJxbWrAlIaUUpRoFUuJaBZHQFC4TgVGkN51fZQoaAZoCWgPQwiDT3Pyoqh1wJSGlFKUaBVLdmgWR0BQugblzU7TdX2UKGgGaAloD0MIlpNQ+kLmdcCUhpRSlGgVS3JoFkdAULrKmsNlRXV9lChoBmgJaA9DCOMbCp+tSlvAlIaUUpRoFUtnaBZHQFC7vrnkkrx1fZQoaAZoCWgPQwh0tKolnfliwJSGlFKUaBVLZ2gWR0BQu5cxCY1HdX2UKGgGaAloD0MId0zdld2iacCUhpRSlGgVS4poFkdAUMfmxMWXTnV9lChoBmgJaA9DCERpb/BFDHHAlIaUUpRoFUteaBZHQFDJx+rlvIh1fZQoaAZoCWgPQwgHexND8i1iwJSGlFKUaBVLZ2gWR0BQz33ta6jGdX2UKGgGaAloD0MIU+qScQzhYcCUhpRSlGgVS1ZoFkdAUNC9lEqlQHV9lChoBmgJaA9DCCGSIcfWl17AlIaUUpRoFUuBaBZHQFDStiQT2391fZQoaAZoCWgPQwhQqKePwBtXwJSGlFKUaBVLSmgWR0BQ1NOM2m52dX2UKGgGaAloD0MIUwQ4vYt/YsCUhpRSlGgVS4poFkdAUNYJWvKU3XV9lChoBmgJaA9DCDtSfecXUmTAlIaUUpRoFUtQaBZHQFDXHB1s+FF1fZQoaAZoCWgPQwjwNQTHZdRLwJSGlFKUaBVLcWgWR0BQ1z7uUliSdX2UKGgGaAloD0MISMFTyJVWacCUhpRSlGgVS1xoFkdAUNheRgZ0jnV9lChoBmgJaA9DCFYpPdPLr2LAlIaUUpRoFUteaBZHQFDaGpda+vh1fZQoaAZoCWgPQwgKZ7eWyfFYwJSGlFKUaBVLeWgWR0BQ2yxA0KqodX2UKGgGaAloD0MIH6LRHcS+Y8CUhpRSlGgVS45oFkdAUNu9US7GvXV9lChoBmgJaA9DCHu8kA4Pw1vAlIaUUpRoFUt0aBZHQFDbrn1WbPR1fZQoaAZoCWgPQwgaqIx/H41lwJSGlFKUaBVLemgWR0BQ3bPY4ACGdX2UKGgGaAloD0MIfo/665VsYMCUhpRSlGgVS0toFkdAUOHUG3WnTHV9lChoBmgJaA9DCPdbO1ESxF7AlIaUUpRoFUtVaBZHQFDlfNRm9QJ1fZQoaAZoCWgPQwgXmus00qtRwJSGlFKUaBVLSGgWR0BQ5l6Z6UqydX2UKGgGaAloD0MIZ7rXST3odMCUhpRSlGgVS31oFkdAUOblGPPszHV9lChoBmgJaA9DCIkLQKN0iRrAlIaUUpRoFUuGaBZHQFDrIsAeaKF1fZQoaAZoCWgPQwil9iLajitZwJSGlFKUaBVLWmgWR0BQ7T+BH09RdX2UKGgGaAloD0MINKK0N3gEYsCUhpRSlGgVS2xoFkdAUO1lXiiqQ3V9lChoBmgJaA9DCGMNF7mnBVfAlIaUUpRoFUtQaBZHQFDvNu+AVfx1fZQoaAZoCWgPQwjpmzQNCstpwJSGlFKUaBVLZmgWR0BQ8HerMkhSdX2UKGgGaAloD0MI5+PaUDEO+T+UhpRSlGgVS1NoFkdAUPB63RXwLHV9lChoBmgJaA9DCD/iV6zhBk7AlIaUUpRoFUtJaBZHQFDwQxN7Bwd1fZQoaAZoCWgPQwi9pgcFJYdpwJSGlFKUaBVLb2gWR0BQ8acZtNzsdX2UKGgGaAloD0MI1h2LbVLHZMCUhpRSlGgVS2doFkdAUPZ9Brvb5HV9lChoBmgJaA9DCBL6mXpdg2HAlIaUUpRoFUs9aBZHQFD2/gR9PUN1fZQoaAZoCWgPQwh1zeSbbbpMwJSGlFKUaBVLVGgWR0BQ+Hqu8scydX2UKGgGaAloD0MIdGA5QoaGcMCUhpRSlGgVS3VoFkdAUPi+AVfu1HV9lChoBmgJaA9DCMy0/SsrbVjAlIaUUpRoFUtHaBZHQFD43Y+Sr5t1fZQoaAZoCWgPQwjRrkLKz15vwJSGlFKUaBVLg2gWR0BQ+ljy4FzNdX2UKGgGaAloD0MIEYyDS8d1VsCUhpRSlGgVS0xoFkdAUPtkBjnV5XV9lChoBmgJaA9DCF+1MuGXF1bAlIaUUpRoFUtSaBZHQFEDbF0gbId1fZQoaAZoCWgPQwjC+dSxSsJywJSGlFKUaBVLYGgWR0BRB09IPK+0dX2UKGgGaAloD0MIuwuUFFhsX8CUhpRSlGgVS3BoFkdAUQoNWluWKXV9lChoBmgJaA9DCGPuWkI+z1XAlIaUUpRoFUtiaBZHQFEKpMYdhiN1fZQoaAZoCWgPQwi5pkBmZ6djwJSGlFKUaBVLVGgWR0BRDZzYEnstdX2UKGgGaAloD0MIGY18XvEtUMCUhpRSlGgVS01oFkdAUQ3433pOe3V9lChoBmgJaA9DCG9FYoKa5XvAlIaUUpRoFUtraBZHQFEOsyzolld1fZQoaAZoCWgPQwgDYDyDhkJYwJSGlFKUaBVLWGgWR0BRERBZ6lchdX2UKGgGaAloD0MI8bp+wW6ZZMCUhpRSlGgVS3JoFkdAURIMI/qxDHV9lChoBmgJaA9DCCHM7V7uxmXAlIaUUpRoFUt6aBZHQFES60IC2c91fZQoaAZoCWgPQwhlOQmlr/FmwJSGlFKUaBVLbGgWR0BRFSOq//NrdX2UKGgGaAloD0MI3PEmv0UybMCUhpRSlGgVS5BoFkdAURkebNKRMnV9lChoBmgJaA9DCNv4E5WNd3rAlIaUUpRoFUtvaBZHQFEZe9Ba9sd1fZQoaAZoCWgPQwhhi90+q41nwJSGlFKUaBVLdWgWR0BRHGOhkAggdX2UKGgGaAloD0MI6lvmdFnUWMCUhpRSlGgVS0doFkdAURxoYekpJHV9lChoBmgJaA9DCI9srprnkWHAlIaUUpRoFUtJaBZHQFEe1SOzY291fZQoaAZoCWgPQwjiWBe3UXpowJSGlFKUaBVLjWgWR0BRIE0elsP8dX2UKGgGaAloD0MIXhCRmnaBV8CUhpRSlGgVS09oFkdAUSEohIOH33V9lChoBmgJaA9DCLhWe9gLz1LAlIaUUpRoFUtIaBZHQFEiXDWK/Eh1fZQoaAZoCWgPQwjiP91AgV1jwJSGlFKUaBVLcWgWR0BRI/zWf9P2dX2UKGgGaAloD0MIvMywUVZ7YMCUhpRSlGgVS1VoFkdAUSadsi0OVnV9lChoBmgJaA9DCBmuDoC44FDAlIaUUpRoFUtWaBZHQFEpSVGCqZN1fZQoaAZoCWgPQwhz2eicn9RtwJSGlFKUaBVLZGgWR0BRKhrnDBM0dX2UKGgGaAloD0MIQ+GzdXBiUMCUhpRSlGgVS0hoFkdAUS3RhMJyAHV9lChoBmgJaA9DCEz6eyk8mVbAlIaUUpRoFUtDaBZHQFEvM6BAfMh1fZQoaAZoCWgPQwjXijbHOehxwJSGlFKUaBVLZmgWR0BRL37UG3WndX2UKGgGaAloD0MIhdBBl3BMVcCUhpRSlGgVS05oFkdAUTqvNeMQ3HV9lChoBmgJaA9DCLH8+bbgiWnAlIaUUpRoFUuFaBZHQFE7Y7aIval1fZQoaAZoCWgPQwiKzFzg8olYwJSGlFKUaBVLmWgWR0BRPjQ7cO9WdX2UKGgGaAloD0MITMPwETFhTMCUhpRSlGgVS2poFkdAUT4G3WnTAnV9lChoBmgJaA9DCP1OkxlvUWDAlIaUUpRoFUuAaBZHQFE+igCfYjB1fZQoaAZoCWgPQwjvjSEAODtZwJSGlFKUaBVLS2gWR0BRP6SxJNCadX2UKGgGaAloD0MI+3lTkQoZR8CUhpRSlGgVS0BoFkdAUUGKTB68hHV9lChoBmgJaA9DCGJM+nspXmjAlIaUUpRoFUt2aBZHQFFEMs6JZW91fZQoaAZoCWgPQwicxCCw8l5jwJSGlFKUaBVLZGgWR0BRRL0nPVurdX2UKGgGaAloD0MI2bERiNfrXsCUhpRSlGgVS3ZoFkdAUUWDpTuOTHV9lChoBmgJaA9DCDBoIQGjhFbAlIaUUpRoFUtOaBZHQFFHWXkYGdJ1fZQoaAZoCWgPQwjTa7OxUshwwJSGlFKUaBVLhWgWR0BRR62rn1WbdX2UKGgGaAloD0MIZan1fqMAWcCUhpRSlGgVS2poFkdAUUoiV0Lc9HV9lChoBmgJaA9DCJEsYAI3rmDAlIaUUpRoFUtiaBZHQFFNOx0MgEF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 26, "n_steps": 512, "gamma": 0.97, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 1024, "n_epochs": 2, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f49bc85bb80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f49bc85bc10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f49bc85bca0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f49bc85bd30>", "_build": "<function ActorCriticPolicy._build at 0x7f49bc85bdc0>", "forward": "<function ActorCriticPolicy.forward at 0x7f49bc85be50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f49bc85bee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f49bc85bf70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f49bc85e040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f49bc85e0d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f49bc85e160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f49bc85e1f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f49bc7df180>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678823043913716037, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAG4yBD9D/0s9cjitPE3sZb7pw52+piIOvwAAgD8AAAAAzb39PIXhoD9XU0s9kWDOvmhhzztOKs08AAAAAAAAAAAzbIO8DpLaPeJUATweIQ+9h+kiPOcbkTwAAAAAAAAAANBH8r7TZwk/lkgnvVOuNr7DvIS8Bl5VvQAAAAAAAAAAc+klvte9OT+O3Lc7GZlTvlrQhbxaE168AAAAAAAAAAAlGue+aJanPSZ1Qzo/Tz++ljBxvnQjmL4AAAAAAAAAAJqYnjzqHJ0/g56aPVe02b6vSvY8ikQsPQAAAAAAAAAAmqswvlCXgD/DswO+Ytejvpmhg732tjY9AAAAAAAAAAAaeO694dOLPjBMvTxkFxi+kmNvvCuIej0AAAAAAAAAAFiq5L58oEo900rcPD6LNLv+OT2+zchGOwAAgD8AAIA/7iWavqcvZj+/MqW+J1SEvqBZ2L1jyqe8AAAAAAAAAADGrjc+LtWbOzgtjLsMEzo8gdqlPSd1PL0AAIA/AACAPxohM72W/hs9GTcePaCKj70LACM86eSSuwAAAAAAAAAApqK2voidKT8O1RW+RlqBviWvmb3xdyM9AAAAAAAAAABmMos7YcEAPmYndj3V6++9/Ywyu85nlL0AAAAAAAAAAPOeTb6S+8w8+gK2O2c1KboA+l++2Ag5OwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIELBW7RriZUCUhpRSlIwBbJRNcgGMAXSUR0CZCNrYoRZmdX2UKGgGaAloD0MISIld21sTaUCUhpRSlGgVTY4BaBZHQJkLtme18b91fZQoaAZoCWgPQwheonpr4HltQJSGlFKUaBVNYwFoFkdAmQ1pTVDrq3V9lChoBmgJaA9DCBlybD1DdlFAlIaUUpRoFU3oA2gWR0CZD1pKjBVNdX2UKGgGaAloD0MIIEWduYeSSMCUhpRSlGgVTUcBaBZHQJkQn8ejmCB1fZQoaAZoCWgPQwgPtAJDVkdhQJSGlFKUaBVN6ANoFkdAmRW8baRISXV9lChoBmgJaA9DCOUn1T6d2m9AlIaUUpRoFU1dAWgWR0CZGWOzY287dX2UKGgGaAloD0MIke7nFOT0UECUhpRSlGgVTegDaBZHQJkdulchTwV1fZQoaAZoCWgPQwhI/mDgueJrQJSGlFKUaBVNmAFoFkdAmSA/OpsGgXV9lChoBmgJaA9DCHUfgNQmrGdAlIaUUpRoFU3AA2gWR0CZIRKB/ZuidX2UKGgGaAloD0MINfEO8KRNaECUhpRSlGgVTfkBaBZHQJkhun5zo2Z1fZQoaAZoCWgPQwjZe/FFe2NsQJSGlFKUaBVNawFoFkdAmSPISQHRkXV9lChoBmgJaA9DCL8MxohEgT/AlIaUUpRoFU0oAWgWR0CZJhR6nivQdX2UKGgGaAloD0MIpMLYQpC9ZUCUhpRSlGgVTXIBaBZHQJkmhudf9gp1fZQoaAZoCWgPQwh9dVWgFmVqQJSGlFKUaBVNYAFoFkdAmSb123azvHV9lChoBmgJaA9DCDkmi/uPlFZAlIaUUpRoFU3oA2gWR0CZKDPQv6CUdX2UKGgGaAloD0MIEHnL1Y/xSUCUhpRSlGgVTegDaBZHQJkozfixVyZ1fZQoaAZoCWgPQwjn4m97gjZsQJSGlFKUaBVNhQFoFkdAmS1n+ZPVNHV9lChoBmgJaA9DCBXFq6ztPG5AlIaUUpRoFU1qAWgWR0CZLh6VMVUNdX2UKGgGaAloD0MI2gOtwJCraUCUhpRSlGgVTXYBaBZHQJkw/RsuWbB1fZQoaAZoCWgPQwga3NYWnsxsQJSGlFKUaBVNUgFoFkdAmTHMYl6Z6XV9lChoBmgJaA9DCFMJT+j1hFlAlIaUUpRoFU3oA2gWR0CZMkYNiH6/dX2UKGgGaAloD0MIDRgkfVrDaECUhpRSlGgVTUYBaBZHQJkznIcR15l1fZQoaAZoCWgPQwg9Sbpm8sZdQJSGlFKUaBVNawJoFkdAmTSl1B+nZXV9lChoBmgJaA9DCPFiYYic4kZAlIaUUpRoFU3oA2gWR0CZNSgyuZCwdX2UKGgGaAloD0MIg6W6gJfya0CUhpRSlGgVTbABaBZHQJk1gDgZTAF1fZQoaAZoCWgPQwhX7ZqQ1sheQJSGlFKUaBVN6ANoFkdAmTZ21x82JnV9lChoBmgJaA9DCEG8rl+wG/i/lIaUUpRoFU1FAWgWR0CZNxKYAsCldX2UKGgGaAloD0MICJRNucKbEUCUhpRSlGgVTXUBaBZHQJk5rHNorWl1fZQoaAZoCWgPQwhq2sU0U4xkQJSGlFKUaBVNswFoFkdAmTo8/hVENXV9lChoBmgJaA9DCNuIJ7uZ8mpAlIaUUpRoFU3NAWgWR0CZO6Q04zacdX2UKGgGaAloD0MIhe/9DZoHcECUhpRSlGgVTegBaBZHQJlSrZIxxkx1fZQoaAZoCWgPQwiUap+Ox3A7wJSGlFKUaBVNEwFoFkdAmVgx/EwWWXV9lChoBmgJaA9DCEjCvp1E7WpAlIaUUpRoFU2sAmgWR0CZWVeXAuZkdX2UKGgGaAloD0MImN7+XLTgZUCUhpRSlGgVTX4BaBZHQJlZtalk6Lh1fZQoaAZoCWgPQwgWvVMBd1FsQJSGlFKUaBVNWgFoFkdAmVp/szEaVHV9lChoBmgJaA9DCI/9LJaigm1AlIaUUpRoFU2VAWgWR0CZW9EDyOJddX2UKGgGaAloD0MIGapiKv16a0CUhpRSlGgVTVkBaBZHQJlb41Gb1AZ1fZQoaAZoCWgPQwgFFsCUgW82QJSGlFKUaBVL/WgWR0CZXTW7voeQdX2UKGgGaAloD0MIuamB5vNwaUCUhpRSlGgVTXoBaBZHQJlfTJjlPrR1fZQoaAZoCWgPQwjLvFXXIadkQJSGlFKUaBVN+gFoFkdAmV+WuDBdlnV9lChoBmgJaA9DCKD6B5EMh0nAlIaUUpRoFUvVaBZHQJliu+bmU4d1fZQoaAZoCWgPQwi4Wicuxz9wQJSGlFKUaBVN4wFoFkdAmWM0aAFxGXV9lChoBmgJaA9DCGowDcNHUWxAlIaUUpRoFU1hAWgWR0CZY33aBZp0dX2UKGgGaAloD0MIsfm4NlRJZ0CUhpRSlGgVTbIBaBZHQJlm1pwjt5V1fZQoaAZoCWgPQwgtz4O7s9xrQJSGlFKUaBVNYAFoFkdAmWf0ZJkGzXV9lChoBmgJaA9DCDZWYp6VdBXAlIaUUpRoFU0UAWgWR0CZaC/NqxkedX2UKGgGaAloD0MI4GQbuAP6bECUhpRSlGgVTV4BaBZHQJlqQXxe9jB1fZQoaAZoCWgPQwgv3LkwUj9iQJSGlFKUaBVNuQJoFkdAmWyZyp71I3V9lChoBmgJaA9DCGGowwq3qG1AlIaUUpRoFU1iAWgWR0CZbfUGmk30dX2UKGgGaAloD0MIKxIT1PBnbkCUhpRSlGgVTZABaBZHQJluipvP1L91fZQoaAZoCWgPQwjJO4cyVPZpQJSGlFKUaBVN1gFoFkdAmW8in+AEuHV9lChoBmgJaA9DCMO4G0TrfG9AlIaUUpRoFU10AWgWR0CZcOskpqh2dX2UKGgGaAloD0MI+GwdHOxCUMCUhpRSlGgVTT8BaBZHQJlyItqYZ2p1fZQoaAZoCWgPQwhXsI14skRXQJSGlFKUaBVN6ANoFkdAmXKSAQQL/nV9lChoBmgJaA9DCAK6L2e2sU5AlIaUUpRoFU3oA2gWR0CZcy3z+WGAdX2UKGgGaAloD0MIE9VbA9t9aUCUhpRSlGgVTWQBaBZHQJl0U8kleGB1fZQoaAZoCWgPQwgNNnUeFRVlQJSGlFKUaBVN3QFoFkdAmXW0MPSUknV9lChoBmgJaA9DCAIPDCD8g2tAlIaUUpRoFU13AWgWR0CZeX55Z8rqdX2UKGgGaAloD0MIeJYgIyBFcECUhpRSlGgVTVMBaBZHQJl5/rY5DJF1fZQoaAZoCWgPQwjsUbgeBXxrQJSGlFKUaBVNXAFoFkdAmXyL2Dg62nV9lChoBmgJaA9DCI6VmGclzRtAlIaUUpRoFUv8aBZHQJl94XvYvnN1fZQoaAZoCWgPQwhM3gAz369MQJSGlFKUaBVN6ANoFkdAmYBRjawljXV9lChoBmgJaA9DCPKXFvVJ1EDAlIaUUpRoFU14AWgWR0CZgNPY4ACGdX2UKGgGaAloD0MI9l0R/O+xZUCUhpRSlGgVTX4CaBZHQJmDZ5Qgs9V1fZQoaAZoCWgPQwj6DKg3o0toQJSGlFKUaBVNWAFoFkdAmYUkQf6oEXV9lChoBmgJaA9DCMKFPIIbYm5AlIaUUpRoFU2BAWgWR0CZhYMzuWrwdX2UKGgGaAloD0MI5XrbTIUPb0CUhpRSlGgVTWIBaBZHQJmcT3BYV7B1fZQoaAZoCWgPQwh9kjtsordvQJSGlFKUaBVNaAFoFkdAmZ36+rU9ZHV9lChoBmgJaA9DCN5X5ULlV0/AlIaUUpRoFU0lAWgWR0CZoIQo1DSgdX2UKGgGaAloD0MIdGIP7eM2bUCUhpRSlGgVTbcBaBZHQJmjL5tWMjx1fZQoaAZoCWgPQwgDB7R0RRpwQJSGlFKUaBVNRAFoFkdAmaXKrWAf+3V9lChoBmgJaA9DCHGQEOUL5GpAlIaUUpRoFU2CAWgWR0CZq0jASFoMdX2UKGgGaAloD0MIRWgEG9fDbkCUhpRSlGgVTYwBaBZHQJmsTYAbQ1J1fZQoaAZoCWgPQwio4PCCiAVqQJSGlFKUaBVNdAFoFkdAmazuc6Nly3V9lChoBmgJaA9DCGEyVTAqSTLAlIaUUpRoFUvIaBZHQJmuR2JSBLB1fZQoaAZoCWgPQwjfbd44qbRvQJSGlFKUaBVNewFoFkdAmbArmp2lmHV9lChoBmgJaA9DCG3mkNTCoGhAlIaUUpRoFU2SAWgWR0CZsFKvmozfdX2UKGgGaAloD0MIXi7iOzGvV0CUhpRSlGgVTegDaBZHQJmwpwqAjIJ1fZQoaAZoCWgPQwiAngYMkvhXQJSGlFKUaBVN6ANoFkdAmbIC/oJRfnV9lChoBmgJaA9DCNfDl4kisEfAlIaUUpRoFU1SAWgWR0CZso3uuzQedX2UKGgGaAloD0MI6pYd4h/cWECUhpRSlGgVTegDaBZHQJm3g10knkV1fZQoaAZoCWgPQwjkh0ojZvBaQJSGlFKUaBVN6ANoFkdAmblT4L1EmnV9lChoBmgJaA9DCJQT7Sqk5CnAlIaUUpRoFU0mAWgWR0CZu8tuDSPVdX2UKGgGaAloD0MIpDSbx2FOaECUhpRSlGgVTSoCaBZHQJm70QK8cuJ1fZQoaAZoCWgPQwjhuIybmlhsQJSGlFKUaBVNsgFoFkdAmb7aGtZFHHV9lChoBmgJaA9DCERq2sU0xz/AlIaUUpRoFU0vAWgWR0CZwuzLfUF0dX2UKGgGaAloD0MI6xotB3p2bkCUhpRSlGgVTS4BaBZHQJnGifK6nR91fZQoaAZoCWgPQwjS4SGMn9dqQJSGlFKUaBVNpwFoFkdAmcbccdYGMXV9lChoBmgJaA9DCIo/ijrzbmtAlIaUUpRoFU2GAWgWR0CZxwxVAAyVdX2UKGgGaAloD0MIhSUeUDYTaECUhpRSlGgVTWsBaBZHQJnHcQNCqp91fZQoaAZoCWgPQwi2os1xbhFoQJSGlFKUaBVNbQFoFkdAmcfwGGEf1nV9lChoBmgJaA9DCNJVurvOoldAlIaUUpRoFU3oA2gWR0CZyTYsd1dPdX2UKGgGaAloD0MI1LfM6bJKVkCUhpRSlGgVTegDaBZHQJnL1SiudPN1fZQoaAZoCWgPQwjDoEyjyQ5uQJSGlFKUaBVNaAFoFkdAmc2D/6wdKnV9lChoBmgJaA9DCFluaTWkaGhAlIaUUpRoFU1dAWgWR0CZzhxKxs2vdX2UKGgGaAloD0MIrtSzIJRtakCUhpRSlGgVTVoBaBZHQJnPkEU0vXd1fZQoaAZoCWgPQwgh6GhVy8RsQJSGlFKUaBVNbQJoFkdAmc/vGp++d3V9lChoBmgJaA9DCKYO8nowvFpAlIaUUpRoFU3oA2gWR0CZ0VwGnn+ydX2UKGgGaAloD0MI5PkMqDeNbECUhpRSlGgVTVcBaBZHQJnRXUYsNDt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.98, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d51fb33fe98c8d84f2bb68faab2bb10158dfc809e69f6cbf67748a4d8dde9a6d
|
3 |
+
size 147424
|
ppo-LunarLander-v2/data
CHANGED
@@ -43,12 +43,12 @@
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 16,
|
46 |
-
"num_timesteps":
|
47 |
-
"_total_timesteps":
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
@@ -57,7 +57,7 @@
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -67,24 +67,24 @@
|
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
-
"_current_progress_remaining": -0.
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
-
"_n_updates":
|
80 |
-
"n_steps":
|
81 |
-
"gamma": 0.
|
82 |
"gae_lambda": 0.98,
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
-
"batch_size":
|
87 |
-
"n_epochs":
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1678823043913716037,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAG4yBD9D/0s9cjitPE3sZb7pw52+piIOvwAAgD8AAAAAzb39PIXhoD9XU0s9kWDOvmhhzztOKs08AAAAAAAAAAAzbIO8DpLaPeJUATweIQ+9h+kiPOcbkTwAAAAAAAAAANBH8r7TZwk/lkgnvVOuNr7DvIS8Bl5VvQAAAAAAAAAAc+klvte9OT+O3Lc7GZlTvlrQhbxaE168AAAAAAAAAAAlGue+aJanPSZ1Qzo/Tz++ljBxvnQjmL4AAAAAAAAAAJqYnjzqHJ0/g56aPVe02b6vSvY8ikQsPQAAAAAAAAAAmqswvlCXgD/DswO+Ytejvpmhg732tjY9AAAAAAAAAAAaeO694dOLPjBMvTxkFxi+kmNvvCuIej0AAAAAAAAAAFiq5L58oEo900rcPD6LNLv+OT2+zchGOwAAgD8AAIA/7iWavqcvZj+/MqW+J1SEvqBZ2L1jyqe8AAAAAAAAAADGrjc+LtWbOzgtjLsMEzo8gdqlPSd1PL0AAIA/AACAPxohM72W/hs9GTcePaCKj70LACM86eSSuwAAAAAAAAAApqK2voidKT8O1RW+RlqBviWvmb3xdyM9AAAAAAAAAABmMos7YcEAPmYndj3V6++9/Ywyu85nlL0AAAAAAAAAAPOeTb6S+8w8+gK2O2c1KboA+l++2Ag5OwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIELBW7RriZUCUhpRSlIwBbJRNcgGMAXSUR0CZCNrYoRZmdX2UKGgGaAloD0MISIld21sTaUCUhpRSlGgVTY4BaBZHQJkLtme18b91fZQoaAZoCWgPQwheonpr4HltQJSGlFKUaBVNYwFoFkdAmQ1pTVDrq3V9lChoBmgJaA9DCBlybD1DdlFAlIaUUpRoFU3oA2gWR0CZD1pKjBVNdX2UKGgGaAloD0MIIEWduYeSSMCUhpRSlGgVTUcBaBZHQJkQn8ejmCB1fZQoaAZoCWgPQwgPtAJDVkdhQJSGlFKUaBVN6ANoFkdAmRW8baRISXV9lChoBmgJaA9DCOUn1T6d2m9AlIaUUpRoFU1dAWgWR0CZGWOzY287dX2UKGgGaAloD0MIke7nFOT0UECUhpRSlGgVTegDaBZHQJkdulchTwV1fZQoaAZoCWgPQwhI/mDgueJrQJSGlFKUaBVNmAFoFkdAmSA/OpsGgXV9lChoBmgJaA9DCHUfgNQmrGdAlIaUUpRoFU3AA2gWR0CZIRKB/ZuidX2UKGgGaAloD0MINfEO8KRNaECUhpRSlGgVTfkBaBZHQJkhun5zo2Z1fZQoaAZoCWgPQwjZe/FFe2NsQJSGlFKUaBVNawFoFkdAmSPISQHRkXV9lChoBmgJaA9DCL8MxohEgT/AlIaUUpRoFU0oAWgWR0CZJhR6nivQdX2UKGgGaAloD0MIpMLYQpC9ZUCUhpRSlGgVTXIBaBZHQJkmhudf9gp1fZQoaAZoCWgPQwh9dVWgFmVqQJSGlFKUaBVNYAFoFkdAmSb123azvHV9lChoBmgJaA9DCDkmi/uPlFZAlIaUUpRoFU3oA2gWR0CZKDPQv6CUdX2UKGgGaAloD0MIEHnL1Y/xSUCUhpRSlGgVTegDaBZHQJkozfixVyZ1fZQoaAZoCWgPQwjn4m97gjZsQJSGlFKUaBVNhQFoFkdAmS1n+ZPVNHV9lChoBmgJaA9DCBXFq6ztPG5AlIaUUpRoFU1qAWgWR0CZLh6VMVUNdX2UKGgGaAloD0MI2gOtwJCraUCUhpRSlGgVTXYBaBZHQJkw/RsuWbB1fZQoaAZoCWgPQwga3NYWnsxsQJSGlFKUaBVNUgFoFkdAmTHMYl6Z6XV9lChoBmgJaA9DCFMJT+j1hFlAlIaUUpRoFU3oA2gWR0CZMkYNiH6/dX2UKGgGaAloD0MIDRgkfVrDaECUhpRSlGgVTUYBaBZHQJkznIcR15l1fZQoaAZoCWgPQwg9Sbpm8sZdQJSGlFKUaBVNawJoFkdAmTSl1B+nZXV9lChoBmgJaA9DCPFiYYic4kZAlIaUUpRoFU3oA2gWR0CZNSgyuZCwdX2UKGgGaAloD0MIg6W6gJfya0CUhpRSlGgVTbABaBZHQJk1gDgZTAF1fZQoaAZoCWgPQwhX7ZqQ1sheQJSGlFKUaBVN6ANoFkdAmTZ21x82JnV9lChoBmgJaA9DCEG8rl+wG/i/lIaUUpRoFU1FAWgWR0CZNxKYAsCldX2UKGgGaAloD0MICJRNucKbEUCUhpRSlGgVTXUBaBZHQJk5rHNorWl1fZQoaAZoCWgPQwhq2sU0U4xkQJSGlFKUaBVNswFoFkdAmTo8/hVENXV9lChoBmgJaA9DCNuIJ7uZ8mpAlIaUUpRoFU3NAWgWR0CZO6Q04zacdX2UKGgGaAloD0MIhe/9DZoHcECUhpRSlGgVTegBaBZHQJlSrZIxxkx1fZQoaAZoCWgPQwiUap+Ox3A7wJSGlFKUaBVNEwFoFkdAmVgx/EwWWXV9lChoBmgJaA9DCEjCvp1E7WpAlIaUUpRoFU2sAmgWR0CZWVeXAuZkdX2UKGgGaAloD0MImN7+XLTgZUCUhpRSlGgVTX4BaBZHQJlZtalk6Lh1fZQoaAZoCWgPQwgWvVMBd1FsQJSGlFKUaBVNWgFoFkdAmVp/szEaVHV9lChoBmgJaA9DCI/9LJaigm1AlIaUUpRoFU2VAWgWR0CZW9EDyOJddX2UKGgGaAloD0MIGapiKv16a0CUhpRSlGgVTVkBaBZHQJlb41Gb1AZ1fZQoaAZoCWgPQwgFFsCUgW82QJSGlFKUaBVL/WgWR0CZXTW7voeQdX2UKGgGaAloD0MIuamB5vNwaUCUhpRSlGgVTXoBaBZHQJlfTJjlPrR1fZQoaAZoCWgPQwjLvFXXIadkQJSGlFKUaBVN+gFoFkdAmV+WuDBdlnV9lChoBmgJaA9DCKD6B5EMh0nAlIaUUpRoFUvVaBZHQJliu+bmU4d1fZQoaAZoCWgPQwi4Wicuxz9wQJSGlFKUaBVN4wFoFkdAmWM0aAFxGXV9lChoBmgJaA9DCGowDcNHUWxAlIaUUpRoFU1hAWgWR0CZY33aBZp0dX2UKGgGaAloD0MIsfm4NlRJZ0CUhpRSlGgVTbIBaBZHQJlm1pwjt5V1fZQoaAZoCWgPQwgtz4O7s9xrQJSGlFKUaBVNYAFoFkdAmWf0ZJkGzXV9lChoBmgJaA9DCDZWYp6VdBXAlIaUUpRoFU0UAWgWR0CZaC/NqxkedX2UKGgGaAloD0MI4GQbuAP6bECUhpRSlGgVTV4BaBZHQJlqQXxe9jB1fZQoaAZoCWgPQwgv3LkwUj9iQJSGlFKUaBVNuQJoFkdAmWyZyp71I3V9lChoBmgJaA9DCGGowwq3qG1AlIaUUpRoFU1iAWgWR0CZbfUGmk30dX2UKGgGaAloD0MIKxIT1PBnbkCUhpRSlGgVTZABaBZHQJluipvP1L91fZQoaAZoCWgPQwjJO4cyVPZpQJSGlFKUaBVN1gFoFkdAmW8in+AEuHV9lChoBmgJaA9DCMO4G0TrfG9AlIaUUpRoFU10AWgWR0CZcOskpqh2dX2UKGgGaAloD0MI+GwdHOxCUMCUhpRSlGgVTT8BaBZHQJlyItqYZ2p1fZQoaAZoCWgPQwhXsI14skRXQJSGlFKUaBVN6ANoFkdAmXKSAQQL/nV9lChoBmgJaA9DCAK6L2e2sU5AlIaUUpRoFU3oA2gWR0CZcy3z+WGAdX2UKGgGaAloD0MIE9VbA9t9aUCUhpRSlGgVTWQBaBZHQJl0U8kleGB1fZQoaAZoCWgPQwgNNnUeFRVlQJSGlFKUaBVN3QFoFkdAmXW0MPSUknV9lChoBmgJaA9DCAIPDCD8g2tAlIaUUpRoFU13AWgWR0CZeX55Z8rqdX2UKGgGaAloD0MIeJYgIyBFcECUhpRSlGgVTVMBaBZHQJl5/rY5DJF1fZQoaAZoCWgPQwjsUbgeBXxrQJSGlFKUaBVNXAFoFkdAmXyL2Dg62nV9lChoBmgJaA9DCI6VmGclzRtAlIaUUpRoFUv8aBZHQJl94XvYvnN1fZQoaAZoCWgPQwhM3gAz369MQJSGlFKUaBVN6ANoFkdAmYBRjawljXV9lChoBmgJaA9DCPKXFvVJ1EDAlIaUUpRoFU14AWgWR0CZgNPY4ACGdX2UKGgGaAloD0MI9l0R/O+xZUCUhpRSlGgVTX4CaBZHQJmDZ5Qgs9V1fZQoaAZoCWgPQwj6DKg3o0toQJSGlFKUaBVNWAFoFkdAmYUkQf6oEXV9lChoBmgJaA9DCMKFPIIbYm5AlIaUUpRoFU2BAWgWR0CZhYMzuWrwdX2UKGgGaAloD0MI5XrbTIUPb0CUhpRSlGgVTWIBaBZHQJmcT3BYV7B1fZQoaAZoCWgPQwh9kjtsordvQJSGlFKUaBVNaAFoFkdAmZ36+rU9ZHV9lChoBmgJaA9DCN5X5ULlV0/AlIaUUpRoFU0lAWgWR0CZoIQo1DSgdX2UKGgGaAloD0MIdGIP7eM2bUCUhpRSlGgVTbcBaBZHQJmjL5tWMjx1fZQoaAZoCWgPQwgDB7R0RRpwQJSGlFKUaBVNRAFoFkdAmaXKrWAf+3V9lChoBmgJaA9DCHGQEOUL5GpAlIaUUpRoFU2CAWgWR0CZq0jASFoMdX2UKGgGaAloD0MIRWgEG9fDbkCUhpRSlGgVTYwBaBZHQJmsTYAbQ1J1fZQoaAZoCWgPQwio4PCCiAVqQJSGlFKUaBVNdAFoFkdAmazuc6Nly3V9lChoBmgJaA9DCGEyVTAqSTLAlIaUUpRoFUvIaBZHQJmuR2JSBLB1fZQoaAZoCWgPQwjfbd44qbRvQJSGlFKUaBVNewFoFkdAmbArmp2lmHV9lChoBmgJaA9DCG3mkNTCoGhAlIaUUpRoFU2SAWgWR0CZsFKvmozfdX2UKGgGaAloD0MIXi7iOzGvV0CUhpRSlGgVTegDaBZHQJmwpwqAjIJ1fZQoaAZoCWgPQwiAngYMkvhXQJSGlFKUaBVN6ANoFkdAmbIC/oJRfnV9lChoBmgJaA9DCNfDl4kisEfAlIaUUpRoFU1SAWgWR0CZso3uuzQedX2UKGgGaAloD0MI6pYd4h/cWECUhpRSlGgVTegDaBZHQJm3g10knkV1fZQoaAZoCWgPQwjkh0ojZvBaQJSGlFKUaBVN6ANoFkdAmblT4L1EmnV9lChoBmgJaA9DCJQT7Sqk5CnAlIaUUpRoFU0mAWgWR0CZu8tuDSPVdX2UKGgGaAloD0MIpDSbx2FOaECUhpRSlGgVTSoCaBZHQJm70QK8cuJ1fZQoaAZoCWgPQwjhuIybmlhsQJSGlFKUaBVNsgFoFkdAmb7aGtZFHHV9lChoBmgJaA9DCERq2sU0xz/AlIaUUpRoFU0vAWgWR0CZwuzLfUF0dX2UKGgGaAloD0MI6xotB3p2bkCUhpRSlGgVTS4BaBZHQJnGifK6nR91fZQoaAZoCWgPQwjS4SGMn9dqQJSGlFKUaBVNpwFoFkdAmcbccdYGMXV9lChoBmgJaA9DCIo/ijrzbmtAlIaUUpRoFU2GAWgWR0CZxwxVAAyVdX2UKGgGaAloD0MIhSUeUDYTaECUhpRSlGgVTWsBaBZHQJnHcQNCqp91fZQoaAZoCWgPQwi2os1xbhFoQJSGlFKUaBVNbQFoFkdAmcfwGGEf1nV9lChoBmgJaA9DCNJVurvOoldAlIaUUpRoFU3oA2gWR0CZyTYsd1dPdX2UKGgGaAloD0MI1LfM6bJKVkCUhpRSlGgVTegDaBZHQJnL1SiudPN1fZQoaAZoCWgPQwjDoEyjyQ5uQJSGlFKUaBVNaAFoFkdAmc2D/6wdKnV9lChoBmgJaA9DCFluaTWkaGhAlIaUUpRoFU1dAWgWR0CZzhxKxs2vdX2UKGgGaAloD0MIrtSzIJRtakCUhpRSlGgVTVoBaBZHQJnPkEU0vXd1fZQoaAZoCWgPQwgh6GhVy8RsQJSGlFKUaBVNbQJoFkdAmc/vGp++d3V9lChoBmgJaA9DCKYO8nowvFpAlIaUUpRoFU3oA2gWR0CZ0VwGnn+ydX2UKGgGaAloD0MI5PkMqDeNbECUhpRSlGgVTVcBaBZHQJnRXUYsNDt1ZS4="
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.98,
|
82 |
"gae_lambda": 0.98,
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:032a69f7e8fccf05acfcfb8884717950f8a33ad960a56851ab4b9b0c48e40f41
|
3 |
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43393
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:274c124bc109fb463b782d686529a239e4c65f42c7deea9f8d2c2c4e6b73dba2
|
3 |
size 43393
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 158.9744671668355, "std_reward": 94.07647961139887, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-14T20:06:40.416777"}
|