File size: 4,619 Bytes
856c667 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
---
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vit-base-patch16-224-in21k-finetuned-biopsy
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-patch16-224-in21k-finetuned-biopsy
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1224
- Accuracy: 0.9665
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.1332 | 1.0 | 42 | 1.0712 | 0.5494 |
| 0.6556 | 2.0 | 84 | 0.5742 | 0.8492 |
| 0.3987 | 3.0 | 126 | 0.3950 | 0.8894 |
| 0.2825 | 4.0 | 168 | 0.3924 | 0.8777 |
| 0.3662 | 5.0 | 210 | 0.3622 | 0.8861 |
| 0.2218 | 6.0 | 252 | 0.2706 | 0.9246 |
| 0.2236 | 7.0 | 294 | 0.2283 | 0.9347 |
| 0.2224 | 8.0 | 336 | 0.2367 | 0.9313 |
| 0.1754 | 9.0 | 378 | 0.2139 | 0.9296 |
| 0.1707 | 10.0 | 420 | 0.1829 | 0.9497 |
| 0.1619 | 11.0 | 462 | 0.2172 | 0.9464 |
| 0.1547 | 12.0 | 504 | 0.1960 | 0.9380 |
| 0.1213 | 13.0 | 546 | 0.1484 | 0.9581 |
| 0.1388 | 14.0 | 588 | 0.1689 | 0.9581 |
| 0.1009 | 15.0 | 630 | 0.1494 | 0.9581 |
| 0.124 | 16.0 | 672 | 0.1564 | 0.9581 |
| 0.1078 | 17.0 | 714 | 0.1728 | 0.9514 |
| 0.102 | 18.0 | 756 | 0.1669 | 0.9447 |
| 0.1006 | 19.0 | 798 | 0.1405 | 0.9581 |
| 0.0791 | 20.0 | 840 | 0.1179 | 0.9665 |
| 0.0694 | 21.0 | 882 | 0.1424 | 0.9631 |
| 0.0627 | 22.0 | 924 | 0.1224 | 0.9665 |
| 0.0883 | 23.0 | 966 | 0.1602 | 0.9447 |
| 0.074 | 24.0 | 1008 | 0.1315 | 0.9615 |
| 0.0708 | 25.0 | 1050 | 0.1331 | 0.9631 |
| 0.06 | 26.0 | 1092 | 0.1191 | 0.9665 |
| 0.083 | 27.0 | 1134 | 0.1583 | 0.9531 |
| 0.0584 | 28.0 | 1176 | 0.1348 | 0.9564 |
| 0.0627 | 29.0 | 1218 | 0.1270 | 0.9564 |
| 0.0627 | 30.0 | 1260 | 0.1411 | 0.9564 |
| 0.038 | 31.0 | 1302 | 0.1208 | 0.9665 |
| 0.0569 | 32.0 | 1344 | 0.1587 | 0.9514 |
| 0.0502 | 33.0 | 1386 | 0.1501 | 0.9497 |
| 0.0464 | 34.0 | 1428 | 0.1508 | 0.9615 |
| 0.0317 | 35.0 | 1470 | 0.1309 | 0.9631 |
| 0.0552 | 36.0 | 1512 | 0.1372 | 0.9598 |
| 0.031 | 37.0 | 1554 | 0.1258 | 0.9598 |
| 0.0383 | 38.0 | 1596 | 0.1249 | 0.9682 |
| 0.036 | 39.0 | 1638 | 0.1312 | 0.9665 |
| 0.0405 | 40.0 | 1680 | 0.1207 | 0.9665 |
| 0.0343 | 41.0 | 1722 | 0.1233 | 0.9648 |
| 0.0325 | 42.0 | 1764 | 0.1286 | 0.9631 |
| 0.0293 | 43.0 | 1806 | 0.1135 | 0.9682 |
| 0.0306 | 44.0 | 1848 | 0.1258 | 0.9615 |
| 0.0267 | 45.0 | 1890 | 0.1261 | 0.9648 |
| 0.0338 | 46.0 | 1932 | 0.1209 | 0.9665 |
| 0.0213 | 47.0 | 1974 | 0.1157 | 0.9665 |
| 0.0285 | 48.0 | 2016 | 0.1203 | 0.9631 |
| 0.0287 | 49.0 | 2058 | 0.1240 | 0.9648 |
| 0.0183 | 50.0 | 2100 | 0.1224 | 0.9665 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1
|