--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-patch16-224-in21k-finetuned-papsmear results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9411764705882353 --- # vit-base-patch16-224-in21k-finetuned-papsmear This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2523 - Accuracy: 0.9412 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 1.6954 | 0.9935 | 38 | 1.6106 | 0.3456 | | 1.2818 | 1.9869 | 76 | 1.2412 | 0.5735 | | 1.0023 | 2.9804 | 114 | 0.9875 | 0.7132 | | 0.7163 | 4.0 | 153 | 0.8399 | 0.6912 | | 0.5173 | 4.9935 | 191 | 0.6546 | 0.8162 | | 0.5057 | 5.9869 | 229 | 0.6251 | 0.8309 | | 0.4313 | 6.9804 | 267 | 0.5696 | 0.8309 | | 0.325 | 8.0 | 306 | 0.5507 | 0.8309 | | 0.3811 | 8.9935 | 344 | 0.4429 | 0.8676 | | 0.2341 | 9.9869 | 382 | 0.4222 | 0.875 | | 0.3082 | 10.9804 | 420 | 0.6573 | 0.7721 | | 0.2571 | 12.0 | 459 | 0.4229 | 0.8897 | | 0.2374 | 12.9935 | 497 | 0.4233 | 0.875 | | 0.128 | 13.9869 | 535 | 0.3671 | 0.8971 | | 0.1718 | 14.9804 | 573 | 0.3430 | 0.8971 | | 0.16 | 16.0 | 612 | 0.4104 | 0.875 | | 0.1096 | 16.9935 | 650 | 0.2920 | 0.9118 | | 0.1408 | 17.9869 | 688 | 0.2630 | 0.9044 | | 0.113 | 18.9804 | 726 | 0.3084 | 0.8824 | | 0.1272 | 20.0 | 765 | 0.2523 | 0.9412 | | 0.119 | 20.9935 | 803 | 0.4254 | 0.8824 | | 0.1068 | 21.9869 | 841 | 0.3519 | 0.8971 | | 0.0723 | 22.9804 | 879 | 0.3293 | 0.9191 | | 0.0769 | 24.0 | 918 | 0.2613 | 0.9265 | | 0.095 | 24.9935 | 956 | 0.2609 | 0.9412 | | 0.0863 | 25.9869 | 994 | 0.2650 | 0.9265 | | 0.0795 | 26.9804 | 1032 | 0.2978 | 0.9118 | | 0.0564 | 28.0 | 1071 | 0.2737 | 0.9191 | | 0.0562 | 28.9935 | 1109 | 0.2941 | 0.9191 | | 0.0751 | 29.8039 | 1140 | 0.3111 | 0.9191 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1