File size: 2,738 Bytes
a7d8e83
d3d7a67
 
 
 
 
 
 
beaeeb6
 
0eb3ca6
ee790b1
beaeeb6
a7d8e83
 
 
 
ee790b1
beaeeb6
 
f3f0a83
beaeeb6
d3d7a67
 
beaeeb6
 
d3d7a67
beaeeb6
 
 
 
 
d3d7a67
 
 
f3f0a83
c730cc4
d3d7a67
 
beaeeb6
d3d7a67
beaeeb6
d3d7a67
 
f3f0a83
beaeeb6
d3d7a67
 
beaeeb6
 
 
 
 
 
 
 
d3d7a67
20e05e3
beaeeb6
d3d7a67
beaeeb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
from typing import Dict, List, Any
import supervision as sv
import urllib.request
import numpy as np
import cv2
import base64
from inference_sdk import InferenceHTTPClient


class EndpointHandler:
    def __init__(self, key):  # pass api key to model
        pass

    def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
        inputs = data.get("inputs")
        isurl = inputs.get("isurl")
        path = inputs.get("path")
        key = inputs.get("key")
        ###########################  Load Image  #################################
        CLIENT = InferenceHTTPClient(api_url="https://detect.roboflow.com", api_key=key)
        print("get client")
        if isurl:  # for url set isurl = 1
            req = urllib.request.urlopen(path)
            arr = np.asarray(bytearray(req.read()), dtype=np.uint8)
            img = cv2.imdecode(arr, -1)  # 'Load it as it is'
        else:  # for image file
            img = cv2.imread(path)
        ###########################################################################

        ###########################  Model Detection  #################################
        # change model_id to use a different model
        # can try:
        # clothing-segmentation-dataset/1
        # t-shirts-detector/1
        # mainmodel/2
        print("start model detection")
        result = CLIENT.infer(path, model_id="mainmodel/2")
        detections = sv.Detections.from_inference(result)
        # print(detections)
        ###########################################################################

        ###########################  Data proccessing  #################################
        # only pass the first detection
        # change 1 -> to len(detections.xyxy) to pass all photos
        print("Data processing")
        if detections.confidence.size == 0:
            return "Not Found"
        else:
            x1, y1, x2, y2 = (
                int(detections.xyxy[0][0]),
                int(detections.xyxy[0][1]),
                int(detections.xyxy[0][2]),
                int(detections.xyxy[0][3]),
            )
            clothes = img[y1:y2, x1:x2]
            retval, buffer = cv2.imencode(".jpg", clothes)
        # create base 64 object
        jpg_as_text = base64.b64encode(buffer).decode("utf-8") # Decode bytes to string
        ###########################################################################
        return jpg_as_text


###########################################################################


# data = {
#     "inputs": {
#         "isurl": True,
#         "path": "http://192.168.10.20/cam-hi.jpg",
#         "key": "iJuYzEzNEFSaQq4e0hfE",
#     }
# }

# #  test run
# Model = EndpointHandler()
# print(Model(data))