Image-preprocessor / handler.py
oscarfu0501's picture
Upload 3 files
049083b verified
raw
history blame
3.08 kB
from typing import Dict, List, Any
import urllib.request
import numpy as np
import cv2
import base64
from ultralytics import YOLO
class EndpointHandler:
def __init__(self): #pass api key to model
# self.CLIENT = InferenceHTTPClient(
# api_url="https://detect.roboflow.com",
# api_key=key
# )
# print("checkpoint 1")
pass
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
inputs = data.get("inputs")
isurl = inputs.get("isurl")
path = inputs.get("path")
model = YOLO("./best.pt")
########################### Load Image #################################
if(isurl): # for url set isurl = 1
print("checkpoint 2-1")
req = urllib.request.urlopen(path)
print("checkpoint 2-2")
arr = np.asarray(bytearray(req.read()), dtype=np.uint8)
print("checkpoint 2-3")
img = cv2.imdecode(arr, -1) # 'Load it as it is'
else: # for image file
img = cv2.imread(path)
print("checkpoint 2")
###########################################################################
########################### Model Detection #################################
# change model_id to use a different model
# can try:
# clothing-detection-s4ioc/6 //good
# clothing-segmentation-dataset/1
# t-shirts-detector/1
# mainmodel/2
#result = self.CLIENT.infer(path, model_id="mainmodel/2")
result = model(img)
#annotated_frame = result[0].plot()
detections = result[0].boxes
#print(result[0].boxes.xyxy)
#cv2.imshow("YOLOv8 Inference", annotated_frame)
# print(result)
#cv2.waitKey(0)
#detections = sv.Detections.from_inference(result)
# print(detections)
print("checkpoint 3")
###########################################################################
########################### Data proccessing #################################
# only pass the first detection
# change 1 -> to len(detections.xyxy) to pass all photos
if(detections.xyxy.size == 0):
return "Not Found"
else:
x1, y1, x2, y2 = int(detections.xyxy[0][0]), int(detections.xyxy[0][1]), int(detections.xyxy[0][2]), int(detections.xyxy[0][3])
clothes = img[y1: y2, x1: x2]
retval , buffer = cv2.imencode('.jpg', clothes)
cv2.imwrite("result.jpg", clothes)
# create base 64 object
jpg_as_text = base64.b64encode(buffer)
print("checkpoint 4")
###########################################################################
return jpg_as_text
###########################################################################
# test run
# Model = Image_detect()
# test file image
# print(Model("test_images/test6.jpg", 0))
#test url
# print(Model("http://10.10.2.100/cam-lo.jpg", 1))