File size: 1,829 Bytes
f04e030 fef199d f04e030 fef199d f04e030 fef199d f542585 f04e030 199807f f04e030 6451c94 4e1b352 24536fd f04e030 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
from typing import Dict, List, Any
import numpy as np
from transformers import CLIPProcessor, CLIPModel
from PIL import Image
from io import BytesIO
import base64
import requests
# handle clip embeddings by utilizing openAI CLIP pretrained model
class EndpointHandler():
def __init__(self, path=""):
# Preload all the elements you we need at inference.
self.model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
self.processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
# inputs = self.processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True)
# logits_per_image = outputs.logits_per_image # this is the image-text similarity score
# probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
# print(probs)
# data = {
# "inputs": {
# "image": "http://images.cocodataset.org/val2017/000000039769.jpg",
# "text": ["a photo of a cat", "a photo of a dog"]
# },
# }
inputs = data.get("inputs")
imageBase64 = inputs.get("image")
# imageURL = inputs.get("image")
text = inputs.get("text")
# print(imageURL)
# print(text)
# image = Image.open(requests.get(imageBase64, stream=True).raw)
image = Image.open(BytesIO(base64.b64decode(imageBase64.split(",")[1].encode())))
inputs = self.processor(text=text, images=image, return_tensors="pt", padding=True)
outputs = self.model(**inputs)
embeddings = outputs.image_embeds.detach().numpy().flatten().tolist()
return { "embeddings": embeddings } |