Maldopast commited on
Commit
e5e6af3
·
1 Parent(s): 8c8614b

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - marsyas/gtzan
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: distilhubert-finetuned-gtzan
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # distilhubert-finetuned-gtzan
18
+
19
+ This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.7537
22
+ - Accuracy: 0.88
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 5e-05
42
+ - train_batch_size: 16
43
+ - eval_batch_size: 16
44
+ - seed: 42
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_ratio: 0.1
48
+ - num_epochs: 15
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
53
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
54
+ | 1.9647 | 1.0 | 113 | 1.8614 | 0.52 |
55
+ | 1.3987 | 2.0 | 226 | 1.3098 | 0.61 |
56
+ | 0.8809 | 3.0 | 339 | 0.8631 | 0.76 |
57
+ | 0.7643 | 4.0 | 452 | 0.8114 | 0.77 |
58
+ | 0.5958 | 5.0 | 565 | 0.7013 | 0.81 |
59
+ | 0.4405 | 6.0 | 678 | 0.5860 | 0.84 |
60
+ | 0.2183 | 7.0 | 791 | 0.6114 | 0.82 |
61
+ | 0.1587 | 8.0 | 904 | 0.5141 | 0.85 |
62
+ | 0.0899 | 9.0 | 1017 | 0.4760 | 0.87 |
63
+ | 0.0575 | 10.0 | 1130 | 0.5759 | 0.86 |
64
+ | 0.0647 | 11.0 | 1243 | 0.6467 | 0.86 |
65
+ | 0.0061 | 12.0 | 1356 | 0.6372 | 0.88 |
66
+ | 0.0029 | 13.0 | 1469 | 0.6721 | 0.88 |
67
+ | 0.0018 | 14.0 | 1582 | 0.7565 | 0.89 |
68
+ | 0.0013 | 15.0 | 1695 | 0.7537 | 0.88 |
69
+
70
+
71
+ ### Framework versions
72
+
73
+ - Transformers 4.30.1
74
+ - Pytorch 2.0.1+cu117
75
+ - Datasets 2.14.0
76
+ - Tokenizers 0.13.3