--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: [] --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7537 - Accuracy: 0.88 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9647 | 1.0 | 113 | 1.8614 | 0.52 | | 1.3987 | 2.0 | 226 | 1.3098 | 0.61 | | 0.8809 | 3.0 | 339 | 0.8631 | 0.76 | | 0.7643 | 4.0 | 452 | 0.8114 | 0.77 | | 0.5958 | 5.0 | 565 | 0.7013 | 0.81 | | 0.4405 | 6.0 | 678 | 0.5860 | 0.84 | | 0.2183 | 7.0 | 791 | 0.6114 | 0.82 | | 0.1587 | 8.0 | 904 | 0.5141 | 0.85 | | 0.0899 | 9.0 | 1017 | 0.4760 | 0.87 | | 0.0575 | 10.0 | 1130 | 0.5759 | 0.86 | | 0.0647 | 11.0 | 1243 | 0.6467 | 0.86 | | 0.0061 | 12.0 | 1356 | 0.6372 | 0.88 | | 0.0029 | 13.0 | 1469 | 0.6721 | 0.88 | | 0.0018 | 14.0 | 1582 | 0.7565 | 0.89 | | 0.0013 | 15.0 | 1695 | 0.7537 | 0.88 | ### Framework versions - Transformers 4.30.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.0 - Tokenizers 0.13.3