reset to only audio processing
Browse files- handler.py +13 -73
handler.py
CHANGED
@@ -1,30 +1,9 @@
|
|
1 |
-
import argparse
|
2 |
-
import base64
|
3 |
import io
|
4 |
-
import
|
5 |
-
import os
|
6 |
-
|
7 |
from faster_whisper import WhisperModel
|
8 |
-
|
9 |
-
|
10 |
-
from file_processor import process_video
|
11 |
-
|
12 |
-
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
13 |
-
|
14 |
-
|
15 |
-
def is_cdn_link(link_or_bytes):
|
16 |
-
logging.info("Checking if the provided link is a CDN link...")
|
17 |
-
if isinstance(link_or_bytes, bytes):
|
18 |
-
return False
|
19 |
-
return True
|
20 |
-
|
21 |
|
22 |
-
|
23 |
-
audio = AudioSegment.from_file(audio_path)
|
24 |
-
buffer = io.BytesIO()
|
25 |
-
audio.export(buffer, format='mp3')
|
26 |
-
buffer.seek(0)
|
27 |
-
return buffer
|
28 |
|
29 |
|
30 |
class EndpointHandler:
|
@@ -32,26 +11,21 @@ class EndpointHandler:
|
|
32 |
self.model = WhisperModel("large-v3", num_workers=30)
|
33 |
|
34 |
def __call__(self, data: dict[str, str]):
|
35 |
-
|
36 |
-
|
37 |
language = data.pop("language", "de")
|
38 |
task = data.pop("task", "transcribe")
|
39 |
-
response = {}
|
40 |
-
audio_path = None
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
response.update({"slides": slides_list})
|
47 |
-
else:
|
48 |
-
audio_bytes_decoded = base64.b64decode(inputs)
|
49 |
-
logging.debug(f"Decoded Bytes Length: {len(audio_bytes_decoded)}")
|
50 |
-
audio_bytes = io.BytesIO(audio_bytes_decoded)
|
51 |
|
|
|
52 |
logging.info("Running inference...")
|
53 |
-
segments, info = self.model.transcribe(audio_bytes, language=language, task=task
|
54 |
|
|
|
55 |
full_text = []
|
56 |
for segment in segments:
|
57 |
full_text.append({"segmentId": segment.id,
|
@@ -66,38 +40,4 @@ class EndpointHandler:
|
|
66 |
logging.info("segment " + str(segment.id) + " transcribed")
|
67 |
logging.info("Inference completed.")
|
68 |
|
69 |
-
|
70 |
-
logging.debug(response)
|
71 |
-
if audio_path:
|
72 |
-
os.remove(audio_path)
|
73 |
-
return response
|
74 |
-
|
75 |
-
|
76 |
-
if __name__ == '__main__':
|
77 |
-
Parser = argparse.ArgumentParser(description="EndpointHandler")
|
78 |
-
Parser.add_argument("-p", "--path")
|
79 |
-
Parser.add_argument("-l", "--language", default="de")
|
80 |
-
Parser.add_argument("-t", "--task", default="transcribe")
|
81 |
-
Parser.add_argument("--type", default="video")
|
82 |
-
Args = Parser.parse_args()
|
83 |
-
|
84 |
-
handler = EndpointHandler()
|
85 |
-
|
86 |
-
|
87 |
-
# if is_cdn_link(Args.path):
|
88 |
-
# test_inputs = Args.path
|
89 |
-
# else:
|
90 |
-
audio = AudioSegment.from_mp3(r"C:\Users\mbabu\AppData\Local\Temp\tmpsezkw2i5.mp3")
|
91 |
-
buffer = io.BytesIO()
|
92 |
-
audio.export(buffer, format="mp3")
|
93 |
-
mp3_bytes = buffer.getvalue()
|
94 |
-
test_inputs = base64.b64encode(mp3_bytes)
|
95 |
-
|
96 |
-
sample_data = {
|
97 |
-
"inputs": test_inputs,
|
98 |
-
"language": Args.language,
|
99 |
-
"task": Args.task,
|
100 |
-
}
|
101 |
-
|
102 |
-
test = handler(sample_data)
|
103 |
-
print(test)
|
|
|
|
|
|
|
1 |
import io
|
2 |
+
import base64
|
|
|
|
|
3 |
from faster_whisper import WhisperModel
|
4 |
+
import logging
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
logging.basicConfig(level=logging.DEBUG)
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
|
9 |
class EndpointHandler:
|
|
|
11 |
self.model = WhisperModel("large-v3", num_workers=30)
|
12 |
|
13 |
def __call__(self, data: dict[str, str]):
|
14 |
+
# process inputs
|
15 |
+
inputs = data.pop("inputs", data)
|
16 |
language = data.pop("language", "de")
|
17 |
task = data.pop("task", "transcribe")
|
|
|
|
|
18 |
|
19 |
+
# Decode base64 string to bytes
|
20 |
+
audio_bytes_decoded = base64.b64decode(inputs)
|
21 |
+
logging.debug(f"Decoded Bytes Length: {len(audio_bytes_decoded)}")
|
22 |
+
audio_bytes = io.BytesIO(audio_bytes_decoded)
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
# run inference pipeline
|
25 |
logging.info("Running inference...")
|
26 |
+
segments, info = self.model.transcribe(audio_bytes, language=language, task=task)
|
27 |
|
28 |
+
# postprocess the prediction
|
29 |
full_text = []
|
30 |
for segment in segments:
|
31 |
full_text.append({"segmentId": segment.id,
|
|
|
40 |
logging.info("segment " + str(segment.id) + " transcribed")
|
41 |
logging.info("Inference completed.")
|
42 |
|
43 |
+
return full_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|