ManarAli commited on
Commit
6c41d9f
·
1 Parent(s): 3cfc3d2

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 747.79 +/- 197.03
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5aef53c800ecf7ea8bd1a507b449559c630d7e3a2b0bb28e4ed106fd7435ce61
3
+ size 124941
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc1ccef8af0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc1ccef8b80>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc1ccef8c10>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc1ccef8ca0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fc1ccef8d30>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fc1ccef8dc0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc1ccef8e50>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc1ccef8ee0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fc1ccef8f70>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc1cce96040>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc1cce960d0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc1cce96160>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fc1cce93d00>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
26
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
27
+ "optimizer_kwargs": {
28
+ "alpha": 0.99,
29
+ "eps": 1e-05,
30
+ "weight_decay": 0
31
+ }
32
+ },
33
+ "observation_space": {
34
+ ":type:": "<class 'gym.spaces.box.Box'>",
35
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
36
+ "dtype": "float32",
37
+ "_shape": [
38
+ 28
39
+ ],
40
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
41
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
42
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
43
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
44
+ "_np_random": null
45
+ },
46
+ "action_space": {
47
+ ":type:": "<class 'gym.spaces.box.Box'>",
48
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
49
+ "dtype": "float32",
50
+ "_shape": [
51
+ 8
52
+ ],
53
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
54
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
55
+ "bounded_below": "[ True True True True True True True True]",
56
+ "bounded_above": "[ True True True True True True True True]",
57
+ "_np_random": null
58
+ },
59
+ "n_envs": 4,
60
+ "num_timesteps": 2000000,
61
+ "_total_timesteps": 2000000,
62
+ "_num_timesteps_at_start": 0,
63
+ "seed": null,
64
+ "action_noise": null,
65
+ "start_time": 1680649821902402963,
66
+ "learning_rate": 0.0007,
67
+ "tensorboard_log": null,
68
+ "lr_schedule": {
69
+ ":type:": "<class 'function'>",
70
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
71
+ },
72
+ "_last_obs": {
73
+ ":type:": "<class 'numpy.ndarray'>",
74
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJzFlT+f8+i/9Qf0v2Q7ZT7w0zXA2x7Evyt8EMDNba++3rBUwEPo/L+WI0I/gYWlvgTgpb8jl1S/6E/kPlruED71LBjAtNdyv8LuWr+a5FVAYt6kPWVxG8AILmO/FQCnv0SqdT9PWuI+orARP9JkhL/QYbI+N47bv3aNxsAfbRQ919BWv1y5VT/5LsC/wW28v+heucAO4E48J71sPxHslL+8rnm/k933Pu3pej8kfke9gn18v5FZJT9zgjo/k6bWu8GDHD9wNhnA3uxFQEZTmz6FYoW/T1riPnzq4L8FgXc/+biJPZ4YAcA6yDvAskZJP5eLi767BQq+D3aFPndEz79Fs0TA5880wHD4gL9/rMS7EfRyPhbql754TGw/hXvEP+qAoj8eDRG/pjTOPoSBZ8BDlf+9eWI0wAsLnj/F26M+hWKFv09a4j586uC/0mSEv8apnj/f1lO/CQgsO//mdD/zeO8+58uxP3w1Lj8gpui/QAezvgEnjr/OSZG/UrMLP/87WD8C+NA+Z1sAP7fX4j//fac/Ne8Wvtecmj6yx8e/DD0Kv2sTU8Dg4f8/S4h9PoVihb9PWuI+fOrgvwWBdz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
75
+ },
76
+ "_last_episode_starts": {
77
+ ":type:": "<class 'numpy.ndarray'>",
78
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
79
+ },
80
+ "_last_original_obs": {
81
+ ":type:": "<class 'numpy.ndarray'>",
82
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAYnx02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAiKK/vQAAAAAA/fe/AAAAADCQXj0AAAAAatj2PwAAAADijg2+AAAAAOY5+T8AAAAAWmPHvQAAAABrPOO/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAie5EtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEWQ9LwAAAAACWHavwAAAADpWAe+AAAAAJd/8D8AAAAA4GDFPQAAAAAscP4/AAAAAJTv8T0AAAAA9mr8vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFT5oDUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBg0ek8AAAAAFEN478AAAAAhq2lvQAAAACNPeU/AAAAAH0uoT0AAAAAI0TqPwAAAABIEau9AAAAAHjQ678AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB6z/e1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA82qsPQAAAACbB/m/AAAAABCXhj0AAAAA4NrkPwAAAABs5N+9AAAAANz39T8AAAAA7FFHvQAAAABIi+6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
83
+ },
84
+ "_episode_num": 0,
85
+ "use_sde": false,
86
+ "sde_sample_freq": -1,
87
+ "_current_progress_remaining": 0.0,
88
+ "ep_info_buffer": {
89
+ ":type:": "<class 'collections.deque'>",
90
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJsFgzVMEieMAWyUTegDjAF0lEdAsBRoFA3T/nV9lChoBkdAnjCrjHXEqGgHTegDaAhHQLAXPmAskIJ1fZQoaAZHQJsMtQP7N0NoB03oA2gIR0CwF4N4Z/CqdX2UKGgGR0CYclhV2icoaAdN6ANoCEdAsBhiqLjxTnV9lChoBkdAmicYZIg/1WgHTegDaAhHQLAbkecx0uF1fZQoaAZHQJPDeIgvDgtoB03oA2gIR0CwH/oFFDv3dX2UKGgGR0CYA94cWCVbaAdN6ANoCEdAsCBqwRoRI3V9lChoBkdAmdWKbF0gbWgHTegDaAhHQLAhwzWwu/V1fZQoaAZHQJvKwkC3gDRoB03oA2gIR0CwJWz7uUlidX2UKGgGR0CZ96sniNsFaAdN6ANoCEdAsChImMOwxHV9lChoBkdAm3BOn62v0WgHTegDaAhHQLAojjT8YQ91fZQoaAZHQJg1D5aePJdoB03oA2gIR0CwKWnzQNTcdX2UKGgGR0CbiDCw8nuzaAdN6ANoCEdAsCym09hZyXV9lChoBkdAmN4j6BRQ8GgHTegDaAhHQLAwz40Mw111fZQoaAZHQJnf8NLDhtNoB03oA2gIR0CwMTv9cbBHdX2UKGgGR0CXis57PY4AaAdN6ANoCEdAsDKYJF9a2XV9lChoBkdAnPj1kH2RJWgHTegDaAhHQLA2cozeoDR1fZQoaAZHQJtUWxLTQVtoB03oA2gIR0CwOUOVTrE+dX2UKGgGR0Ce2fW/ag27aAdN6ANoCEdAsDmI2jwhGHV9lChoBkdAnjILI91U2mgHTegDaAhHQLA6aoLG7z11fZQoaAZHQJ7rgKiO/+NoB03oA2gIR0CwPY4F/x2CdX2UKGgGR0Cdb1/vfCQ+aAdN6ANoCEdAsEFo1R+BpnV9lChoBkdAn5CaRMewLWgHTegDaAhHQLBB1FdLQHB1fZQoaAZHQJ/u9Bsyi25oB03oA2gIR0CwQzIsNDtxdX2UKGgGR0Cc/2guyu6maAdN6ANoCEdAsEdMM8YAKnV9lChoBkdAnKCmmYSg5GgHTegDaAhHQLBKItmtheB1fZQoaAZHQJ/96801qFhoB03oA2gIR0CwSmnv+fh/dX2UKGgGR0CeAlnhsImgaAdN6ANoCEdAsEtBQVKwp3V9lChoBkdAn2KfkvK2a2gHTegDaAhHQLBOWoE0SAZ1fZQoaAZHQJHox8ohIOJoB03oA2gIR0CwUdkvGp++dX2UKGgGR0Cf6F2zOX3QaAdN6ANoCEdAsFJBNO/L1XV9lChoBkdAntEBZuAI6mgHTegDaAhHQLBTnBCD28J1fZQoaAZHQJ36oIcBEKFoB03oA2gIR0CwWBYTj/+9dX2UKGgGR0Ce729ZRsMzaAdN6ANoCEdAsFroQwsXi3V9lChoBkdAn7ITe40/GGgHTegDaAhHQLBbLh+OOsF1fZQoaAZHQJ9JTgQ6IWRoB03oA2gIR0CwXAFt8/lidX2UKGgGR0CfHYDRc/t6aAdN6ANoCEdAsF8Z6yB063V9lChoBkdAn2yaOtGNJmgHTegDaAhHQLBiH9A5aNd1fZQoaAZHQJ8BcNpdrwhoB03oA2gIR0CwYoZyhi9adX2UKGgGR0Cd+duXu3MIaAdN6ANoCEdAsGPSa8YhuHV9lChoBkdAnUTFwYLsr2gHTegDaAhHQLBowakRBeJ1fZQoaAZHQJ9lSNDMNc5oB03oA2gIR0Cwa5QWrOqvdX2UKGgGR0CehHOktVaPaAdN6ANoCEdAsGvXKU3XI3V9lChoBkdAnjVmcnVoYmgHTegDaAhHQLBss655JK91fZQoaAZHQJ8LDB68g6loB03oA2gIR0Cwb8WsRxtIdX2UKGgGR0CdocI1+AmRaAdN6ANoCEdAsHKbJtBOYnV9lChoBkdAnXCjollbvGgHTegDaAhHQLBy7a3qiXZ1fZQoaAZHQKCazf9gndBoB03oA2gIR0CwdDhQN0/4dX2UKGgGR0CYL3LxI8QqaAdN6ANoCEdAsHlD2exwAHV9lChoBkdAhAkRU3n6mGgHTegDaAhHQLB8gcjJMg51fZQoaAZHQJ/Uzlq8DjloB03oA2gIR0CwfMaOHWSVdX2UKGgGR0CCV4YvWYnfaAdN6ANoCEdAsH2ijZcs2HV9lChoBkdAg8N9sBQvYmgHTegDaAhHQLCAy8BMi8p1fZQoaAZHQJk2qOvMbFVoB03oA2gIR0Cwg5WOIZZTdX2UKGgGR0CGbBPepGWlaAdN6ANoCEdAsIPayfL9uXV9lChoBkdAnYgUk4WDYmgHTegDaAhHQLCE+XA/LTx1fZQoaAZHQJx8Qk/r0J5oB03oA2gIR0CwicwwCbMHdX2UKGgGR0CWFkqTr3TNaAdN6ANoCEdAsI1SJO32EnV9lChoBkdAnmCkcGTs6mgHTegDaAhHQLCNldMCcPR1fZQoaAZHQJjaq72+PBBoB03oA2gIR0Cwjm5MpPRBdX2UKGgGR0CdrMakRBeHaAdN6ANoCEdAsJGTd2xIKHV9lChoBkdAmjmnQ2MsH2gHTegDaAhHQLCUVDF6zE91fZQoaAZHQJ0dfLV4HHFoB03oA2gIR0CwlJpa/yoXdX2UKGgGR0Cfh8OLR8c/aAdN6ANoCEdAsJV4enyd4HV9lChoBkdAn0n1t0mtyWgHTegDaAhHQLCaOkhib2F1fZQoaAZHQJ72NX0XgtRoB03oA2gIR0CwniuGfwqidX2UKGgGR0Cb9JMgEEDAaAdN6ANoCEdAsJ5w5HVf/nV9lChoBkdAgWqfCyhSL2gHTegDaAhHQLCfTV2A5Jd1fZQoaAZHQJw4F5ooNNJoB03oA2gIR0CwonNNet0WdX2UKGgGR0CXH3oZAIIGaAdN6ANoCEdAsKVQUUO/cnV9lChoBkdAh/nEgGKQ72gHTegDaAhHQLCllI0IkZ91fZQoaAZHQJXVllXiiqRoB03oA2gIR0CwpnXhsImgdX2UKGgGR0CSJJw1R+BpaAdN6ANoCEdAsKr5qJuVHHV9lChoBkdAn7hC1NQCS2gHTegDaAhHQLCvMw1ivxJ1fZQoaAZHQJjDGJvYODtoB03oA2gIR0Cwr3ijQAuJdX2UKGgGR0CcyfW3jMmnaAdN6ANoCEdAsLBYHKOktXV9lChoBkdAh8WMwlByCGgHTegDaAhHQLCzgQ8OkLx1fZQoaAZHQJhqTjaPCEZoB03oA2gIR0CwtlD72tdSdX2UKGgGR0CevKNvwVj7aAdN6ANoCEdAsLaal7+kxnV9lChoBkdAnqt9Jz1bq2gHTegDaAhHQLC3elsxfv51fZQoaAZHQJyi81uR9w5oB03oA2gIR0Cwu6MH4XXRdX2UKGgGR0Caenk9ECvHaAdN6ANoCEdAsMAeCe2/jHV9lChoBkdAngqRLXcxkGgHTegDaAhHQLDAZdPci4d1fZQoaAZHQJ72TX4CZF5oB03oA2gIR0CwwT0M1CPZdX2UKGgGR0Cdd3y08eS0aAdN6ANoCEdAsMR00fozN3V9lChoBkdAnXL46XBxgmgHTegDaAhHQLDHZ0u14Ph1fZQoaAZHQJ61Z98Z1mtoB03oA2gIR0Cwx63VTaTPdX2UKGgGR0CfHRSdOIqLaAdN6ANoCEdAsMiQyLyc1HV9lChoBkdAf6htaY/mkmgHTegDaAhHQLDMn6t1ZDB1fZQoaAZHQJDO0FUyYXxoB03oA2gIR0Cw0VaJl8PXdX2UKGgGR0CfkDmQKa5PaAdN6ANoCEdAsNHBrzoUz3V9lChoBkdAnlcobfgrH2gHTegDaAhHQLDSrmTC+Dh1fZQoaAZHQJ4njmnwXqJoB03oA2gIR0Cw1edsJpnIdX2UKGgGR0CgIVW2gFotaAdN6ANoCEdAsNjRH+ZPVXV9lChoBkdAn62n0f5k9WgHTegDaAhHQLDZGGwRoRJ1fZQoaAZHQJ7kOtW+49ZoB03oA2gIR0Cw2gkth/iHdX2UKGgGR0CaPGXrdFfBaAdN6ANoCEdAsN4Kzru6VnV9lChoBkdAnaFRAWznimgHTegDaAhHQLDiqLgXMyJ1fZQoaAZHQInRh5qubI9oB03oA2gIR0Cw4xjBVMmGdX2UKGgGR0CVcVDUmUnpaAdN6ANoCEdAsOQHCemNznVlLg=="
91
+ },
92
+ "ep_success_buffer": {
93
+ ":type:": "<class 'collections.deque'>",
94
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
95
+ },
96
+ "_n_updates": 100000,
97
+ "n_steps": 5,
98
+ "gamma": 0.99,
99
+ "gae_lambda": 1.0,
100
+ "ent_coef": 0.0,
101
+ "vf_coef": 0.5,
102
+ "max_grad_norm": 0.5,
103
+ "normalize_advantage": false
104
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00fd5f14d25ff24a2c898ae2c349bddd3d3e8a71a02ce7979e163e67a972dc74
3
+ size 54078
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16558ce3153939880684600fa50827422421fc608ed7d81289119bdd46956dbc
3
+ size 54846
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: False
6
+ - Numpy: 1.24.2
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc1ccef8af0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc1ccef8b80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc1ccef8c10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc1ccef8ca0>", "_build": "<function ActorCriticPolicy._build at 0x7fc1ccef8d30>", "forward": "<function ActorCriticPolicy.forward at 0x7fc1ccef8dc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc1ccef8e50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc1ccef8ee0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc1ccef8f70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc1cce96040>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc1cce960d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc1cce96160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc1cce93d00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680649821902402963, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJzFlT+f8+i/9Qf0v2Q7ZT7w0zXA2x7Evyt8EMDNba++3rBUwEPo/L+WI0I/gYWlvgTgpb8jl1S/6E/kPlruED71LBjAtNdyv8LuWr+a5FVAYt6kPWVxG8AILmO/FQCnv0SqdT9PWuI+orARP9JkhL/QYbI+N47bv3aNxsAfbRQ919BWv1y5VT/5LsC/wW28v+heucAO4E48J71sPxHslL+8rnm/k933Pu3pej8kfke9gn18v5FZJT9zgjo/k6bWu8GDHD9wNhnA3uxFQEZTmz6FYoW/T1riPnzq4L8FgXc/+biJPZ4YAcA6yDvAskZJP5eLi767BQq+D3aFPndEz79Fs0TA5880wHD4gL9/rMS7EfRyPhbql754TGw/hXvEP+qAoj8eDRG/pjTOPoSBZ8BDlf+9eWI0wAsLnj/F26M+hWKFv09a4j586uC/0mSEv8apnj/f1lO/CQgsO//mdD/zeO8+58uxP3w1Lj8gpui/QAezvgEnjr/OSZG/UrMLP/87WD8C+NA+Z1sAP7fX4j//fac/Ne8Wvtecmj6yx8e/DD0Kv2sTU8Dg4f8/S4h9PoVihb9PWuI+fOrgvwWBdz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAYnx02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAiKK/vQAAAAAA/fe/AAAAADCQXj0AAAAAatj2PwAAAADijg2+AAAAAOY5+T8AAAAAWmPHvQAAAABrPOO/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAie5EtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEWQ9LwAAAAACWHavwAAAADpWAe+AAAAAJd/8D8AAAAA4GDFPQAAAAAscP4/AAAAAJTv8T0AAAAA9mr8vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFT5oDUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBg0ek8AAAAAFEN478AAAAAhq2lvQAAAACNPeU/AAAAAH0uoT0AAAAAI0TqPwAAAABIEau9AAAAAHjQ678AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB6z/e1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA82qsPQAAAACbB/m/AAAAABCXhj0AAAAA4NrkPwAAAABs5N+9AAAAANz39T8AAAAA7FFHvQAAAABIi+6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJsFgzVMEieMAWyUTegDjAF0lEdAsBRoFA3T/nV9lChoBkdAnjCrjHXEqGgHTegDaAhHQLAXPmAskIJ1fZQoaAZHQJsMtQP7N0NoB03oA2gIR0CwF4N4Z/CqdX2UKGgGR0CYclhV2icoaAdN6ANoCEdAsBhiqLjxTnV9lChoBkdAmicYZIg/1WgHTegDaAhHQLAbkecx0uF1fZQoaAZHQJPDeIgvDgtoB03oA2gIR0CwH/oFFDv3dX2UKGgGR0CYA94cWCVbaAdN6ANoCEdAsCBqwRoRI3V9lChoBkdAmdWKbF0gbWgHTegDaAhHQLAhwzWwu/V1fZQoaAZHQJvKwkC3gDRoB03oA2gIR0CwJWz7uUlidX2UKGgGR0CZ96sniNsFaAdN6ANoCEdAsChImMOwxHV9lChoBkdAm3BOn62v0WgHTegDaAhHQLAojjT8YQ91fZQoaAZHQJg1D5aePJdoB03oA2gIR0CwKWnzQNTcdX2UKGgGR0CbiDCw8nuzaAdN6ANoCEdAsCym09hZyXV9lChoBkdAmN4j6BRQ8GgHTegDaAhHQLAwz40Mw111fZQoaAZHQJnf8NLDhtNoB03oA2gIR0CwMTv9cbBHdX2UKGgGR0CXis57PY4AaAdN6ANoCEdAsDKYJF9a2XV9lChoBkdAnPj1kH2RJWgHTegDaAhHQLA2cozeoDR1fZQoaAZHQJtUWxLTQVtoB03oA2gIR0CwOUOVTrE+dX2UKGgGR0Ce2fW/ag27aAdN6ANoCEdAsDmI2jwhGHV9lChoBkdAnjILI91U2mgHTegDaAhHQLA6aoLG7z11fZQoaAZHQJ7rgKiO/+NoB03oA2gIR0CwPY4F/x2CdX2UKGgGR0Cdb1/vfCQ+aAdN6ANoCEdAsEFo1R+BpnV9lChoBkdAn5CaRMewLWgHTegDaAhHQLBB1FdLQHB1fZQoaAZHQJ/u9Bsyi25oB03oA2gIR0CwQzIsNDtxdX2UKGgGR0Cc/2guyu6maAdN6ANoCEdAsEdMM8YAKnV9lChoBkdAnKCmmYSg5GgHTegDaAhHQLBKItmtheB1fZQoaAZHQJ/96801qFhoB03oA2gIR0CwSmnv+fh/dX2UKGgGR0CeAlnhsImgaAdN6ANoCEdAsEtBQVKwp3V9lChoBkdAn2KfkvK2a2gHTegDaAhHQLBOWoE0SAZ1fZQoaAZHQJHox8ohIOJoB03oA2gIR0CwUdkvGp++dX2UKGgGR0Cf6F2zOX3QaAdN6ANoCEdAsFJBNO/L1XV9lChoBkdAntEBZuAI6mgHTegDaAhHQLBTnBCD28J1fZQoaAZHQJ36oIcBEKFoB03oA2gIR0CwWBYTj/+9dX2UKGgGR0Ce729ZRsMzaAdN6ANoCEdAsFroQwsXi3V9lChoBkdAn7ITe40/GGgHTegDaAhHQLBbLh+OOsF1fZQoaAZHQJ9JTgQ6IWRoB03oA2gIR0CwXAFt8/lidX2UKGgGR0CfHYDRc/t6aAdN6ANoCEdAsF8Z6yB063V9lChoBkdAn2yaOtGNJmgHTegDaAhHQLBiH9A5aNd1fZQoaAZHQJ8BcNpdrwhoB03oA2gIR0CwYoZyhi9adX2UKGgGR0Cd+duXu3MIaAdN6ANoCEdAsGPSa8YhuHV9lChoBkdAnUTFwYLsr2gHTegDaAhHQLBowakRBeJ1fZQoaAZHQJ9lSNDMNc5oB03oA2gIR0Cwa5QWrOqvdX2UKGgGR0CehHOktVaPaAdN6ANoCEdAsGvXKU3XI3V9lChoBkdAnjVmcnVoYmgHTegDaAhHQLBss655JK91fZQoaAZHQJ8LDB68g6loB03oA2gIR0Cwb8WsRxtIdX2UKGgGR0CdocI1+AmRaAdN6ANoCEdAsHKbJtBOYnV9lChoBkdAnXCjollbvGgHTegDaAhHQLBy7a3qiXZ1fZQoaAZHQKCazf9gndBoB03oA2gIR0CwdDhQN0/4dX2UKGgGR0CYL3LxI8QqaAdN6ANoCEdAsHlD2exwAHV9lChoBkdAhAkRU3n6mGgHTegDaAhHQLB8gcjJMg51fZQoaAZHQJ/Uzlq8DjloB03oA2gIR0CwfMaOHWSVdX2UKGgGR0CCV4YvWYnfaAdN6ANoCEdAsH2ijZcs2HV9lChoBkdAg8N9sBQvYmgHTegDaAhHQLCAy8BMi8p1fZQoaAZHQJk2qOvMbFVoB03oA2gIR0Cwg5WOIZZTdX2UKGgGR0CGbBPepGWlaAdN6ANoCEdAsIPayfL9uXV9lChoBkdAnYgUk4WDYmgHTegDaAhHQLCE+XA/LTx1fZQoaAZHQJx8Qk/r0J5oB03oA2gIR0CwicwwCbMHdX2UKGgGR0CWFkqTr3TNaAdN6ANoCEdAsI1SJO32EnV9lChoBkdAnmCkcGTs6mgHTegDaAhHQLCNldMCcPR1fZQoaAZHQJjaq72+PBBoB03oA2gIR0Cwjm5MpPRBdX2UKGgGR0CdrMakRBeHaAdN6ANoCEdAsJGTd2xIKHV9lChoBkdAmjmnQ2MsH2gHTegDaAhHQLCUVDF6zE91fZQoaAZHQJ0dfLV4HHFoB03oA2gIR0CwlJpa/yoXdX2UKGgGR0Cfh8OLR8c/aAdN6ANoCEdAsJV4enyd4HV9lChoBkdAn0n1t0mtyWgHTegDaAhHQLCaOkhib2F1fZQoaAZHQJ72NX0XgtRoB03oA2gIR0CwniuGfwqidX2UKGgGR0Cb9JMgEEDAaAdN6ANoCEdAsJ5w5HVf/nV9lChoBkdAgWqfCyhSL2gHTegDaAhHQLCfTV2A5Jd1fZQoaAZHQJw4F5ooNNJoB03oA2gIR0CwonNNet0WdX2UKGgGR0CXH3oZAIIGaAdN6ANoCEdAsKVQUUO/cnV9lChoBkdAh/nEgGKQ72gHTegDaAhHQLCllI0IkZ91fZQoaAZHQJXVllXiiqRoB03oA2gIR0CwpnXhsImgdX2UKGgGR0CSJJw1R+BpaAdN6ANoCEdAsKr5qJuVHHV9lChoBkdAn7hC1NQCS2gHTegDaAhHQLCvMw1ivxJ1fZQoaAZHQJjDGJvYODtoB03oA2gIR0Cwr3ijQAuJdX2UKGgGR0CcyfW3jMmnaAdN6ANoCEdAsLBYHKOktXV9lChoBkdAh8WMwlByCGgHTegDaAhHQLCzgQ8OkLx1fZQoaAZHQJhqTjaPCEZoB03oA2gIR0CwtlD72tdSdX2UKGgGR0CevKNvwVj7aAdN6ANoCEdAsLaal7+kxnV9lChoBkdAnqt9Jz1bq2gHTegDaAhHQLC3elsxfv51fZQoaAZHQJyi81uR9w5oB03oA2gIR0Cwu6MH4XXRdX2UKGgGR0Caenk9ECvHaAdN6ANoCEdAsMAeCe2/jHV9lChoBkdAngqRLXcxkGgHTegDaAhHQLDAZdPci4d1fZQoaAZHQJ72TX4CZF5oB03oA2gIR0CwwT0M1CPZdX2UKGgGR0Cdd3y08eS0aAdN6ANoCEdAsMR00fozN3V9lChoBkdAnXL46XBxgmgHTegDaAhHQLDHZ0u14Ph1fZQoaAZHQJ61Z98Z1mtoB03oA2gIR0Cwx63VTaTPdX2UKGgGR0CfHRSdOIqLaAdN6ANoCEdAsMiQyLyc1HV9lChoBkdAf6htaY/mkmgHTegDaAhHQLDMn6t1ZDB1fZQoaAZHQJDO0FUyYXxoB03oA2gIR0Cw0VaJl8PXdX2UKGgGR0CfkDmQKa5PaAdN6ANoCEdAsNHBrzoUz3V9lChoBkdAnlcobfgrH2gHTegDaAhHQLDSrmTC+Dh1fZQoaAZHQJ4njmnwXqJoB03oA2gIR0Cw1edsJpnIdX2UKGgGR0CgIVW2gFotaAdN6ANoCEdAsNjRH+ZPVXV9lChoBkdAn62n0f5k9WgHTegDaAhHQLDZGGwRoRJ1fZQoaAZHQJ7kOtW+49ZoB03oA2gIR0Cw2gkth/iHdX2UKGgGR0CaPGXrdFfBaAdN6ANoCEdAsN4Kzru6VnV9lChoBkdAnaFRAWznimgHTegDaAhHQLDiqLgXMyJ1fZQoaAZHQInRh5qubI9oB03oA2gIR0Cw4xjBVMmGdX2UKGgGR0CVcVDUmUnpaAdN6ANoCEdAsOQHCemNznVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "False", "Numpy": "1.24.2", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (994 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 747.7906981330652, "std_reward": 197.02971847761256, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-05T00:23:33.554859"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e428b625e7126ba1b74fdba489d42d360c6040caaad78cddbd1241e232cefda
3
+ size 2136