Initial commit
Browse files- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +104 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 747.79 +/- 197.03
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5aef53c800ecf7ea8bd1a507b449559c630d7e3a2b0bb28e4ed106fd7435ce61
|
3 |
+
size 124941
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fc1ccef8af0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc1ccef8b80>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc1ccef8c10>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc1ccef8ca0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fc1ccef8d30>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fc1ccef8dc0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc1ccef8e50>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc1ccef8ee0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fc1ccef8f70>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc1cce96040>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc1cce960d0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc1cce96160>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fc1cce93d00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
26 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
27 |
+
"optimizer_kwargs": {
|
28 |
+
"alpha": 0.99,
|
29 |
+
"eps": 1e-05,
|
30 |
+
"weight_decay": 0
|
31 |
+
}
|
32 |
+
},
|
33 |
+
"observation_space": {
|
34 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
35 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
36 |
+
"dtype": "float32",
|
37 |
+
"_shape": [
|
38 |
+
28
|
39 |
+
],
|
40 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
41 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
42 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
43 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"_np_random": null
|
45 |
+
},
|
46 |
+
"action_space": {
|
47 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
48 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
49 |
+
"dtype": "float32",
|
50 |
+
"_shape": [
|
51 |
+
8
|
52 |
+
],
|
53 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
54 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
55 |
+
"bounded_below": "[ True True True True True True True True]",
|
56 |
+
"bounded_above": "[ True True True True True True True True]",
|
57 |
+
"_np_random": null
|
58 |
+
},
|
59 |
+
"n_envs": 4,
|
60 |
+
"num_timesteps": 2000000,
|
61 |
+
"_total_timesteps": 2000000,
|
62 |
+
"_num_timesteps_at_start": 0,
|
63 |
+
"seed": null,
|
64 |
+
"action_noise": null,
|
65 |
+
"start_time": 1680649821902402963,
|
66 |
+
"learning_rate": 0.0007,
|
67 |
+
"tensorboard_log": null,
|
68 |
+
"lr_schedule": {
|
69 |
+
":type:": "<class 'function'>",
|
70 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
71 |
+
},
|
72 |
+
"_last_obs": {
|
73 |
+
":type:": "<class 'numpy.ndarray'>",
|
74 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJzFlT+f8+i/9Qf0v2Q7ZT7w0zXA2x7Evyt8EMDNba++3rBUwEPo/L+WI0I/gYWlvgTgpb8jl1S/6E/kPlruED71LBjAtNdyv8LuWr+a5FVAYt6kPWVxG8AILmO/FQCnv0SqdT9PWuI+orARP9JkhL/QYbI+N47bv3aNxsAfbRQ919BWv1y5VT/5LsC/wW28v+heucAO4E48J71sPxHslL+8rnm/k933Pu3pej8kfke9gn18v5FZJT9zgjo/k6bWu8GDHD9wNhnA3uxFQEZTmz6FYoW/T1riPnzq4L8FgXc/+biJPZ4YAcA6yDvAskZJP5eLi767BQq+D3aFPndEz79Fs0TA5880wHD4gL9/rMS7EfRyPhbql754TGw/hXvEP+qAoj8eDRG/pjTOPoSBZ8BDlf+9eWI0wAsLnj/F26M+hWKFv09a4j586uC/0mSEv8apnj/f1lO/CQgsO//mdD/zeO8+58uxP3w1Lj8gpui/QAezvgEnjr/OSZG/UrMLP/87WD8C+NA+Z1sAP7fX4j//fac/Ne8Wvtecmj6yx8e/DD0Kv2sTU8Dg4f8/S4h9PoVihb9PWuI+fOrgvwWBdz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
75 |
+
},
|
76 |
+
"_last_episode_starts": {
|
77 |
+
":type:": "<class 'numpy.ndarray'>",
|
78 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
79 |
+
},
|
80 |
+
"_last_original_obs": {
|
81 |
+
":type:": "<class 'numpy.ndarray'>",
|
82 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAYnx02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAiKK/vQAAAAAA/fe/AAAAADCQXj0AAAAAatj2PwAAAADijg2+AAAAAOY5+T8AAAAAWmPHvQAAAABrPOO/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAie5EtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEWQ9LwAAAAACWHavwAAAADpWAe+AAAAAJd/8D8AAAAA4GDFPQAAAAAscP4/AAAAAJTv8T0AAAAA9mr8vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFT5oDUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBg0ek8AAAAAFEN478AAAAAhq2lvQAAAACNPeU/AAAAAH0uoT0AAAAAI0TqPwAAAABIEau9AAAAAHjQ678AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB6z/e1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA82qsPQAAAACbB/m/AAAAABCXhj0AAAAA4NrkPwAAAABs5N+9AAAAANz39T8AAAAA7FFHvQAAAABIi+6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
83 |
+
},
|
84 |
+
"_episode_num": 0,
|
85 |
+
"use_sde": false,
|
86 |
+
"sde_sample_freq": -1,
|
87 |
+
"_current_progress_remaining": 0.0,
|
88 |
+
"ep_info_buffer": {
|
89 |
+
":type:": "<class 'collections.deque'>",
|
90 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJsFgzVMEieMAWyUTegDjAF0lEdAsBRoFA3T/nV9lChoBkdAnjCrjHXEqGgHTegDaAhHQLAXPmAskIJ1fZQoaAZHQJsMtQP7N0NoB03oA2gIR0CwF4N4Z/CqdX2UKGgGR0CYclhV2icoaAdN6ANoCEdAsBhiqLjxTnV9lChoBkdAmicYZIg/1WgHTegDaAhHQLAbkecx0uF1fZQoaAZHQJPDeIgvDgtoB03oA2gIR0CwH/oFFDv3dX2UKGgGR0CYA94cWCVbaAdN6ANoCEdAsCBqwRoRI3V9lChoBkdAmdWKbF0gbWgHTegDaAhHQLAhwzWwu/V1fZQoaAZHQJvKwkC3gDRoB03oA2gIR0CwJWz7uUlidX2UKGgGR0CZ96sniNsFaAdN6ANoCEdAsChImMOwxHV9lChoBkdAm3BOn62v0WgHTegDaAhHQLAojjT8YQ91fZQoaAZHQJg1D5aePJdoB03oA2gIR0CwKWnzQNTcdX2UKGgGR0CbiDCw8nuzaAdN6ANoCEdAsCym09hZyXV9lChoBkdAmN4j6BRQ8GgHTegDaAhHQLAwz40Mw111fZQoaAZHQJnf8NLDhtNoB03oA2gIR0CwMTv9cbBHdX2UKGgGR0CXis57PY4AaAdN6ANoCEdAsDKYJF9a2XV9lChoBkdAnPj1kH2RJWgHTegDaAhHQLA2cozeoDR1fZQoaAZHQJtUWxLTQVtoB03oA2gIR0CwOUOVTrE+dX2UKGgGR0Ce2fW/ag27aAdN6ANoCEdAsDmI2jwhGHV9lChoBkdAnjILI91U2mgHTegDaAhHQLA6aoLG7z11fZQoaAZHQJ7rgKiO/+NoB03oA2gIR0CwPY4F/x2CdX2UKGgGR0Cdb1/vfCQ+aAdN6ANoCEdAsEFo1R+BpnV9lChoBkdAn5CaRMewLWgHTegDaAhHQLBB1FdLQHB1fZQoaAZHQJ/u9Bsyi25oB03oA2gIR0CwQzIsNDtxdX2UKGgGR0Cc/2guyu6maAdN6ANoCEdAsEdMM8YAKnV9lChoBkdAnKCmmYSg5GgHTegDaAhHQLBKItmtheB1fZQoaAZHQJ/96801qFhoB03oA2gIR0CwSmnv+fh/dX2UKGgGR0CeAlnhsImgaAdN6ANoCEdAsEtBQVKwp3V9lChoBkdAn2KfkvK2a2gHTegDaAhHQLBOWoE0SAZ1fZQoaAZHQJHox8ohIOJoB03oA2gIR0CwUdkvGp++dX2UKGgGR0Cf6F2zOX3QaAdN6ANoCEdAsFJBNO/L1XV9lChoBkdAntEBZuAI6mgHTegDaAhHQLBTnBCD28J1fZQoaAZHQJ36oIcBEKFoB03oA2gIR0CwWBYTj/+9dX2UKGgGR0Ce729ZRsMzaAdN6ANoCEdAsFroQwsXi3V9lChoBkdAn7ITe40/GGgHTegDaAhHQLBbLh+OOsF1fZQoaAZHQJ9JTgQ6IWRoB03oA2gIR0CwXAFt8/lidX2UKGgGR0CfHYDRc/t6aAdN6ANoCEdAsF8Z6yB063V9lChoBkdAn2yaOtGNJmgHTegDaAhHQLBiH9A5aNd1fZQoaAZHQJ8BcNpdrwhoB03oA2gIR0CwYoZyhi9adX2UKGgGR0Cd+duXu3MIaAdN6ANoCEdAsGPSa8YhuHV9lChoBkdAnUTFwYLsr2gHTegDaAhHQLBowakRBeJ1fZQoaAZHQJ9lSNDMNc5oB03oA2gIR0Cwa5QWrOqvdX2UKGgGR0CehHOktVaPaAdN6ANoCEdAsGvXKU3XI3V9lChoBkdAnjVmcnVoYmgHTegDaAhHQLBss655JK91fZQoaAZHQJ8LDB68g6loB03oA2gIR0Cwb8WsRxtIdX2UKGgGR0CdocI1+AmRaAdN6ANoCEdAsHKbJtBOYnV9lChoBkdAnXCjollbvGgHTegDaAhHQLBy7a3qiXZ1fZQoaAZHQKCazf9gndBoB03oA2gIR0CwdDhQN0/4dX2UKGgGR0CYL3LxI8QqaAdN6ANoCEdAsHlD2exwAHV9lChoBkdAhAkRU3n6mGgHTegDaAhHQLB8gcjJMg51fZQoaAZHQJ/Uzlq8DjloB03oA2gIR0CwfMaOHWSVdX2UKGgGR0CCV4YvWYnfaAdN6ANoCEdAsH2ijZcs2HV9lChoBkdAg8N9sBQvYmgHTegDaAhHQLCAy8BMi8p1fZQoaAZHQJk2qOvMbFVoB03oA2gIR0Cwg5WOIZZTdX2UKGgGR0CGbBPepGWlaAdN6ANoCEdAsIPayfL9uXV9lChoBkdAnYgUk4WDYmgHTegDaAhHQLCE+XA/LTx1fZQoaAZHQJx8Qk/r0J5oB03oA2gIR0CwicwwCbMHdX2UKGgGR0CWFkqTr3TNaAdN6ANoCEdAsI1SJO32EnV9lChoBkdAnmCkcGTs6mgHTegDaAhHQLCNldMCcPR1fZQoaAZHQJjaq72+PBBoB03oA2gIR0Cwjm5MpPRBdX2UKGgGR0CdrMakRBeHaAdN6ANoCEdAsJGTd2xIKHV9lChoBkdAmjmnQ2MsH2gHTegDaAhHQLCUVDF6zE91fZQoaAZHQJ0dfLV4HHFoB03oA2gIR0CwlJpa/yoXdX2UKGgGR0Cfh8OLR8c/aAdN6ANoCEdAsJV4enyd4HV9lChoBkdAn0n1t0mtyWgHTegDaAhHQLCaOkhib2F1fZQoaAZHQJ72NX0XgtRoB03oA2gIR0CwniuGfwqidX2UKGgGR0Cb9JMgEEDAaAdN6ANoCEdAsJ5w5HVf/nV9lChoBkdAgWqfCyhSL2gHTegDaAhHQLCfTV2A5Jd1fZQoaAZHQJw4F5ooNNJoB03oA2gIR0CwonNNet0WdX2UKGgGR0CXH3oZAIIGaAdN6ANoCEdAsKVQUUO/cnV9lChoBkdAh/nEgGKQ72gHTegDaAhHQLCllI0IkZ91fZQoaAZHQJXVllXiiqRoB03oA2gIR0CwpnXhsImgdX2UKGgGR0CSJJw1R+BpaAdN6ANoCEdAsKr5qJuVHHV9lChoBkdAn7hC1NQCS2gHTegDaAhHQLCvMw1ivxJ1fZQoaAZHQJjDGJvYODtoB03oA2gIR0Cwr3ijQAuJdX2UKGgGR0CcyfW3jMmnaAdN6ANoCEdAsLBYHKOktXV9lChoBkdAh8WMwlByCGgHTegDaAhHQLCzgQ8OkLx1fZQoaAZHQJhqTjaPCEZoB03oA2gIR0CwtlD72tdSdX2UKGgGR0CevKNvwVj7aAdN6ANoCEdAsLaal7+kxnV9lChoBkdAnqt9Jz1bq2gHTegDaAhHQLC3elsxfv51fZQoaAZHQJyi81uR9w5oB03oA2gIR0Cwu6MH4XXRdX2UKGgGR0Caenk9ECvHaAdN6ANoCEdAsMAeCe2/jHV9lChoBkdAngqRLXcxkGgHTegDaAhHQLDAZdPci4d1fZQoaAZHQJ72TX4CZF5oB03oA2gIR0CwwT0M1CPZdX2UKGgGR0Cdd3y08eS0aAdN6ANoCEdAsMR00fozN3V9lChoBkdAnXL46XBxgmgHTegDaAhHQLDHZ0u14Ph1fZQoaAZHQJ61Z98Z1mtoB03oA2gIR0Cwx63VTaTPdX2UKGgGR0CfHRSdOIqLaAdN6ANoCEdAsMiQyLyc1HV9lChoBkdAf6htaY/mkmgHTegDaAhHQLDMn6t1ZDB1fZQoaAZHQJDO0FUyYXxoB03oA2gIR0Cw0VaJl8PXdX2UKGgGR0CfkDmQKa5PaAdN6ANoCEdAsNHBrzoUz3V9lChoBkdAnlcobfgrH2gHTegDaAhHQLDSrmTC+Dh1fZQoaAZHQJ4njmnwXqJoB03oA2gIR0Cw1edsJpnIdX2UKGgGR0CgIVW2gFotaAdN6ANoCEdAsNjRH+ZPVXV9lChoBkdAn62n0f5k9WgHTegDaAhHQLDZGGwRoRJ1fZQoaAZHQJ7kOtW+49ZoB03oA2gIR0Cw2gkth/iHdX2UKGgGR0CaPGXrdFfBaAdN6ANoCEdAsN4Kzru6VnV9lChoBkdAnaFRAWznimgHTegDaAhHQLDiqLgXMyJ1fZQoaAZHQInRh5qubI9oB03oA2gIR0Cw4xjBVMmGdX2UKGgGR0CVcVDUmUnpaAdN6ANoCEdAsOQHCemNznVlLg=="
|
91 |
+
},
|
92 |
+
"ep_success_buffer": {
|
93 |
+
":type:": "<class 'collections.deque'>",
|
94 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
95 |
+
},
|
96 |
+
"_n_updates": 100000,
|
97 |
+
"n_steps": 5,
|
98 |
+
"gamma": 0.99,
|
99 |
+
"gae_lambda": 1.0,
|
100 |
+
"ent_coef": 0.0,
|
101 |
+
"vf_coef": 0.5,
|
102 |
+
"max_grad_norm": 0.5,
|
103 |
+
"normalize_advantage": false
|
104 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:00fd5f14d25ff24a2c898ae2c349bddd3d3e8a71a02ce7979e163e67a972dc74
|
3 |
+
size 54078
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16558ce3153939880684600fa50827422421fc608ed7d81289119bdd46956dbc
|
3 |
+
size 54846
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.24.2
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc1ccef8af0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc1ccef8b80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc1ccef8c10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc1ccef8ca0>", "_build": "<function ActorCriticPolicy._build at 0x7fc1ccef8d30>", "forward": "<function ActorCriticPolicy.forward at 0x7fc1ccef8dc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc1ccef8e50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc1ccef8ee0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc1ccef8f70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc1cce96040>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc1cce960d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc1cce96160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc1cce93d00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680649821902402963, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJzFlT+f8+i/9Qf0v2Q7ZT7w0zXA2x7Evyt8EMDNba++3rBUwEPo/L+WI0I/gYWlvgTgpb8jl1S/6E/kPlruED71LBjAtNdyv8LuWr+a5FVAYt6kPWVxG8AILmO/FQCnv0SqdT9PWuI+orARP9JkhL/QYbI+N47bv3aNxsAfbRQ919BWv1y5VT/5LsC/wW28v+heucAO4E48J71sPxHslL+8rnm/k933Pu3pej8kfke9gn18v5FZJT9zgjo/k6bWu8GDHD9wNhnA3uxFQEZTmz6FYoW/T1riPnzq4L8FgXc/+biJPZ4YAcA6yDvAskZJP5eLi767BQq+D3aFPndEz79Fs0TA5880wHD4gL9/rMS7EfRyPhbql754TGw/hXvEP+qAoj8eDRG/pjTOPoSBZ8BDlf+9eWI0wAsLnj/F26M+hWKFv09a4j586uC/0mSEv8apnj/f1lO/CQgsO//mdD/zeO8+58uxP3w1Lj8gpui/QAezvgEnjr/OSZG/UrMLP/87WD8C+NA+Z1sAP7fX4j//fac/Ne8Wvtecmj6yx8e/DD0Kv2sTU8Dg4f8/S4h9PoVihb9PWuI+fOrgvwWBdz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAYnx02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAiKK/vQAAAAAA/fe/AAAAADCQXj0AAAAAatj2PwAAAADijg2+AAAAAOY5+T8AAAAAWmPHvQAAAABrPOO/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAie5EtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEWQ9LwAAAAACWHavwAAAADpWAe+AAAAAJd/8D8AAAAA4GDFPQAAAAAscP4/AAAAAJTv8T0AAAAA9mr8vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFT5oDUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBg0ek8AAAAAFEN478AAAAAhq2lvQAAAACNPeU/AAAAAH0uoT0AAAAAI0TqPwAAAABIEau9AAAAAHjQ678AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB6z/e1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA82qsPQAAAACbB/m/AAAAABCXhj0AAAAA4NrkPwAAAABs5N+9AAAAANz39T8AAAAA7FFHvQAAAABIi+6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJsFgzVMEieMAWyUTegDjAF0lEdAsBRoFA3T/nV9lChoBkdAnjCrjHXEqGgHTegDaAhHQLAXPmAskIJ1fZQoaAZHQJsMtQP7N0NoB03oA2gIR0CwF4N4Z/CqdX2UKGgGR0CYclhV2icoaAdN6ANoCEdAsBhiqLjxTnV9lChoBkdAmicYZIg/1WgHTegDaAhHQLAbkecx0uF1fZQoaAZHQJPDeIgvDgtoB03oA2gIR0CwH/oFFDv3dX2UKGgGR0CYA94cWCVbaAdN6ANoCEdAsCBqwRoRI3V9lChoBkdAmdWKbF0gbWgHTegDaAhHQLAhwzWwu/V1fZQoaAZHQJvKwkC3gDRoB03oA2gIR0CwJWz7uUlidX2UKGgGR0CZ96sniNsFaAdN6ANoCEdAsChImMOwxHV9lChoBkdAm3BOn62v0WgHTegDaAhHQLAojjT8YQ91fZQoaAZHQJg1D5aePJdoB03oA2gIR0CwKWnzQNTcdX2UKGgGR0CbiDCw8nuzaAdN6ANoCEdAsCym09hZyXV9lChoBkdAmN4j6BRQ8GgHTegDaAhHQLAwz40Mw111fZQoaAZHQJnf8NLDhtNoB03oA2gIR0CwMTv9cbBHdX2UKGgGR0CXis57PY4AaAdN6ANoCEdAsDKYJF9a2XV9lChoBkdAnPj1kH2RJWgHTegDaAhHQLA2cozeoDR1fZQoaAZHQJtUWxLTQVtoB03oA2gIR0CwOUOVTrE+dX2UKGgGR0Ce2fW/ag27aAdN6ANoCEdAsDmI2jwhGHV9lChoBkdAnjILI91U2mgHTegDaAhHQLA6aoLG7z11fZQoaAZHQJ7rgKiO/+NoB03oA2gIR0CwPY4F/x2CdX2UKGgGR0Cdb1/vfCQ+aAdN6ANoCEdAsEFo1R+BpnV9lChoBkdAn5CaRMewLWgHTegDaAhHQLBB1FdLQHB1fZQoaAZHQJ/u9Bsyi25oB03oA2gIR0CwQzIsNDtxdX2UKGgGR0Cc/2guyu6maAdN6ANoCEdAsEdMM8YAKnV9lChoBkdAnKCmmYSg5GgHTegDaAhHQLBKItmtheB1fZQoaAZHQJ/96801qFhoB03oA2gIR0CwSmnv+fh/dX2UKGgGR0CeAlnhsImgaAdN6ANoCEdAsEtBQVKwp3V9lChoBkdAn2KfkvK2a2gHTegDaAhHQLBOWoE0SAZ1fZQoaAZHQJHox8ohIOJoB03oA2gIR0CwUdkvGp++dX2UKGgGR0Cf6F2zOX3QaAdN6ANoCEdAsFJBNO/L1XV9lChoBkdAntEBZuAI6mgHTegDaAhHQLBTnBCD28J1fZQoaAZHQJ36oIcBEKFoB03oA2gIR0CwWBYTj/+9dX2UKGgGR0Ce729ZRsMzaAdN6ANoCEdAsFroQwsXi3V9lChoBkdAn7ITe40/GGgHTegDaAhHQLBbLh+OOsF1fZQoaAZHQJ9JTgQ6IWRoB03oA2gIR0CwXAFt8/lidX2UKGgGR0CfHYDRc/t6aAdN6ANoCEdAsF8Z6yB063V9lChoBkdAn2yaOtGNJmgHTegDaAhHQLBiH9A5aNd1fZQoaAZHQJ8BcNpdrwhoB03oA2gIR0CwYoZyhi9adX2UKGgGR0Cd+duXu3MIaAdN6ANoCEdAsGPSa8YhuHV9lChoBkdAnUTFwYLsr2gHTegDaAhHQLBowakRBeJ1fZQoaAZHQJ9lSNDMNc5oB03oA2gIR0Cwa5QWrOqvdX2UKGgGR0CehHOktVaPaAdN6ANoCEdAsGvXKU3XI3V9lChoBkdAnjVmcnVoYmgHTegDaAhHQLBss655JK91fZQoaAZHQJ8LDB68g6loB03oA2gIR0Cwb8WsRxtIdX2UKGgGR0CdocI1+AmRaAdN6ANoCEdAsHKbJtBOYnV9lChoBkdAnXCjollbvGgHTegDaAhHQLBy7a3qiXZ1fZQoaAZHQKCazf9gndBoB03oA2gIR0CwdDhQN0/4dX2UKGgGR0CYL3LxI8QqaAdN6ANoCEdAsHlD2exwAHV9lChoBkdAhAkRU3n6mGgHTegDaAhHQLB8gcjJMg51fZQoaAZHQJ/Uzlq8DjloB03oA2gIR0CwfMaOHWSVdX2UKGgGR0CCV4YvWYnfaAdN6ANoCEdAsH2ijZcs2HV9lChoBkdAg8N9sBQvYmgHTegDaAhHQLCAy8BMi8p1fZQoaAZHQJk2qOvMbFVoB03oA2gIR0Cwg5WOIZZTdX2UKGgGR0CGbBPepGWlaAdN6ANoCEdAsIPayfL9uXV9lChoBkdAnYgUk4WDYmgHTegDaAhHQLCE+XA/LTx1fZQoaAZHQJx8Qk/r0J5oB03oA2gIR0CwicwwCbMHdX2UKGgGR0CWFkqTr3TNaAdN6ANoCEdAsI1SJO32EnV9lChoBkdAnmCkcGTs6mgHTegDaAhHQLCNldMCcPR1fZQoaAZHQJjaq72+PBBoB03oA2gIR0Cwjm5MpPRBdX2UKGgGR0CdrMakRBeHaAdN6ANoCEdAsJGTd2xIKHV9lChoBkdAmjmnQ2MsH2gHTegDaAhHQLCUVDF6zE91fZQoaAZHQJ0dfLV4HHFoB03oA2gIR0CwlJpa/yoXdX2UKGgGR0Cfh8OLR8c/aAdN6ANoCEdAsJV4enyd4HV9lChoBkdAn0n1t0mtyWgHTegDaAhHQLCaOkhib2F1fZQoaAZHQJ72NX0XgtRoB03oA2gIR0CwniuGfwqidX2UKGgGR0Cb9JMgEEDAaAdN6ANoCEdAsJ5w5HVf/nV9lChoBkdAgWqfCyhSL2gHTegDaAhHQLCfTV2A5Jd1fZQoaAZHQJw4F5ooNNJoB03oA2gIR0CwonNNet0WdX2UKGgGR0CXH3oZAIIGaAdN6ANoCEdAsKVQUUO/cnV9lChoBkdAh/nEgGKQ72gHTegDaAhHQLCllI0IkZ91fZQoaAZHQJXVllXiiqRoB03oA2gIR0CwpnXhsImgdX2UKGgGR0CSJJw1R+BpaAdN6ANoCEdAsKr5qJuVHHV9lChoBkdAn7hC1NQCS2gHTegDaAhHQLCvMw1ivxJ1fZQoaAZHQJjDGJvYODtoB03oA2gIR0Cwr3ijQAuJdX2UKGgGR0CcyfW3jMmnaAdN6ANoCEdAsLBYHKOktXV9lChoBkdAh8WMwlByCGgHTegDaAhHQLCzgQ8OkLx1fZQoaAZHQJhqTjaPCEZoB03oA2gIR0CwtlD72tdSdX2UKGgGR0CevKNvwVj7aAdN6ANoCEdAsLaal7+kxnV9lChoBkdAnqt9Jz1bq2gHTegDaAhHQLC3elsxfv51fZQoaAZHQJyi81uR9w5oB03oA2gIR0Cwu6MH4XXRdX2UKGgGR0Caenk9ECvHaAdN6ANoCEdAsMAeCe2/jHV9lChoBkdAngqRLXcxkGgHTegDaAhHQLDAZdPci4d1fZQoaAZHQJ72TX4CZF5oB03oA2gIR0CwwT0M1CPZdX2UKGgGR0Cdd3y08eS0aAdN6ANoCEdAsMR00fozN3V9lChoBkdAnXL46XBxgmgHTegDaAhHQLDHZ0u14Ph1fZQoaAZHQJ61Z98Z1mtoB03oA2gIR0Cwx63VTaTPdX2UKGgGR0CfHRSdOIqLaAdN6ANoCEdAsMiQyLyc1HV9lChoBkdAf6htaY/mkmgHTegDaAhHQLDMn6t1ZDB1fZQoaAZHQJDO0FUyYXxoB03oA2gIR0Cw0VaJl8PXdX2UKGgGR0CfkDmQKa5PaAdN6ANoCEdAsNHBrzoUz3V9lChoBkdAnlcobfgrH2gHTegDaAhHQLDSrmTC+Dh1fZQoaAZHQJ4njmnwXqJoB03oA2gIR0Cw1edsJpnIdX2UKGgGR0CgIVW2gFotaAdN6ANoCEdAsNjRH+ZPVXV9lChoBkdAn62n0f5k9WgHTegDaAhHQLDZGGwRoRJ1fZQoaAZHQJ7kOtW+49ZoB03oA2gIR0Cw2gkth/iHdX2UKGgGR0CaPGXrdFfBaAdN6ANoCEdAsN4Kzru6VnV9lChoBkdAnaFRAWznimgHTegDaAhHQLDiqLgXMyJ1fZQoaAZHQInRh5qubI9oB03oA2gIR0Cw4xjBVMmGdX2UKGgGR0CVcVDUmUnpaAdN6ANoCEdAsOQHCemNznVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "False", "Numpy": "1.24.2", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (994 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 747.7906981330652, "std_reward": 197.02971847761256, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-05T00:23:33.554859"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1e428b625e7126ba1b74fdba489d42d360c6040caaad78cddbd1241e232cefda
|
3 |
+
size 2136
|