File size: 5,534 Bytes
1fea0a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import argparse
import json
import os
import re
import random
import numpy as np


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('--base-dir', type=str)
    parser.add_argument('--result-file', type=str)
    parser.add_argument('--output-file', type=str)
    parser.add_argument('--output-result', type=str)
    parser.add_argument('--split', type=str, default='test')
    parser.add_argument('--options', type=list, default=["A", "B", "C", "D", "E"])
    return parser.parse_args()


def convert_caps(results):
    fakecaps = []
    for result in results:
        image_id = result['question_id']
        caption = result['text']
        fakecaps.append({"image_id": int(image_id), "caption": caption})
    return fakecaps


def get_pred_idx(prediction, choices, options):
    """
    Get the index (e.g. 2) from the prediction (e.g. 'C')
    """
    if prediction in options[:len(choices)]:
        return options.index(prediction)
    else:
        return random.choice(range(len(choices)))


if __name__ == "__main__":
    args = get_args()

    base_dir = args.base_dir
    split_indices = json.load(open(os.path.join(base_dir, "pid_splits.json")))[args.split]
    problems = json.load(open(os.path.join(base_dir, "problems.json")))
    predictions = [json.loads(line) for line in open(args.result_file)]
    predictions = {pred['question_id']: pred for pred in predictions}
    split_problems = {idx: problems[idx] for idx in split_indices}

    results = {'correct': [], 'incorrect': []}
    sqa_results = {}
    sqa_results['acc'] = None
    sqa_results['correct'] = None
    sqa_results['count'] = None
    sqa_results['results'] = {}
    sqa_results['outputs'] = {}

    sqa_results['NAT'] = []
    sqa_results['SOC'] = []
    sqa_results['LAN'] = []
    sqa_results['TXT'] = []
    sqa_results['IMG'] = []
    sqa_results['NO'] = []
    sqa_results['G1-6'] = []
    sqa_results['G7-12'] = []

    for prob_id, prob in split_problems.items():
        if prob_id not in predictions:
            continue
        pred = predictions[prob_id]
        pred_text = pred['text']

        pattern = re.compile(r'The answer is ([A-Z]).')
        res = pattern.findall(pred_text)
        if len(res) == 1:
            answer = res[0]  # 'A', 'B', ...
        else:
            answer = pred['pred']

        pred_idx = get_pred_idx(answer, prob['choices'], args.options)

        analysis = {
            'question_id': prob_id,
            'parsed_ans': answer,
            'ground_truth': args.options[prob['answer']],
            'question': pred['prompt'],
            'pred': pred_text,
            'is_multimodal': '<image>' in pred['prompt'],
        }

        sqa_results['results'][prob_id] = get_pred_idx(answer, prob['choices'], args.options)
        sqa_results['outputs'][prob_id] = pred_text

        if pred_idx == prob['answer']:
            results['correct'].append(analysis)
            cur_result = 1
        else:
            results['incorrect'].append(analysis)
            cur_result = 0

        if prob['subject'] == 'natural science':
            sqa_results['NAT'].append(cur_result)
        elif prob['subject'] == 'social science':
            sqa_results['SOC'].append(cur_result)
        elif prob['subject'] == 'language science':
            sqa_results['LAN'].append(cur_result)

        if prob['hint']:
            sqa_results['TXT'].append(cur_result)
        if prob['image']:
            sqa_results['IMG'].append(cur_result)
        if not prob['hint'] and not prob['image']:
            sqa_results['NO'].append(cur_result)

        if prob['grade'] in ['grade1', 'grade2', 'grade3', 'grade4', 'grade5', 'grade6']:
            sqa_results['G1-6'].append(cur_result)
        elif prob['grade'] in ['grade7', 'grade8', 'grade9', 'grade10', 'grade11', 'grade12']:
            sqa_results['G7-12'].append(cur_result)


    correct = len(results['correct'])
    total = len(results['correct']) + len(results['incorrect'])
    print(f'Total: {total}, Correct: {correct}, Accuracy: {correct / total * 100:.2f}%')

    print(f'Subject NAT: {len(sqa_results["NAT"])}, Correct: {sum(sqa_results["NAT"])}, Accuracy: {np.mean(sqa_results["NAT"]) * 100:.2f}%')
    print(f'Subject SOC: {len(sqa_results["SOC"])}, Correct: {sum(sqa_results["SOC"])}, Accuracy: {np.mean(sqa_results["SOC"]) * 100:.2f}%')
    print(f'Subject LAN: {len(sqa_results["LAN"])}, Correct: {sum(sqa_results["LAN"])}, Accuracy: {np.mean(sqa_results["LAN"]) * 100:.2f}%')

    print(f'Context Modality TXT: {len(sqa_results["TXT"])}, Correct: {sum(sqa_results["TXT"])}, Accuracy: {np.mean(sqa_results["TXT"]) * 100:.2f}%')
    print(f'Context Modality IMG: {len(sqa_results["IMG"])}, Correct: {sum(sqa_results["IMG"])}, Accuracy: {np.mean(sqa_results["IMG"]) * 100:.2f}%')
    print(f'Context Modality NO: {len(sqa_results["NO"])}, Correct: {sum(sqa_results["NO"])}, Accuracy: {np.mean(sqa_results["NO"]) * 100:.2f}%')

    print(f'Grade G1-6: {len(sqa_results["G1-6"])}, Correct: {sum(sqa_results["G1-6"])}, Accuracy: {np.mean(sqa_results["G1-6"]) * 100:.2f}%')
    print(f'Grade G7-12: {len(sqa_results["G7-12"])}, Correct: {sum(sqa_results["G7-12"])}, Accuracy: {np.mean(sqa_results["G7-12"]) * 100:.2f}%')

    sqa_results['acc'] = correct / total * 100
    sqa_results['correct'] = correct
    sqa_results['count'] = total

    with open(args.output_file, 'w') as f:
        json.dump(results, f, indent=2)
    with open(args.output_result, 'w') as f:
        json.dump(sqa_results, f, indent=2)