File size: 5,534 Bytes
1fea0a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import argparse
import json
import os
import re
import random
import numpy as np
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--base-dir', type=str)
parser.add_argument('--result-file', type=str)
parser.add_argument('--output-file', type=str)
parser.add_argument('--output-result', type=str)
parser.add_argument('--split', type=str, default='test')
parser.add_argument('--options', type=list, default=["A", "B", "C", "D", "E"])
return parser.parse_args()
def convert_caps(results):
fakecaps = []
for result in results:
image_id = result['question_id']
caption = result['text']
fakecaps.append({"image_id": int(image_id), "caption": caption})
return fakecaps
def get_pred_idx(prediction, choices, options):
"""
Get the index (e.g. 2) from the prediction (e.g. 'C')
"""
if prediction in options[:len(choices)]:
return options.index(prediction)
else:
return random.choice(range(len(choices)))
if __name__ == "__main__":
args = get_args()
base_dir = args.base_dir
split_indices = json.load(open(os.path.join(base_dir, "pid_splits.json")))[args.split]
problems = json.load(open(os.path.join(base_dir, "problems.json")))
predictions = [json.loads(line) for line in open(args.result_file)]
predictions = {pred['question_id']: pred for pred in predictions}
split_problems = {idx: problems[idx] for idx in split_indices}
results = {'correct': [], 'incorrect': []}
sqa_results = {}
sqa_results['acc'] = None
sqa_results['correct'] = None
sqa_results['count'] = None
sqa_results['results'] = {}
sqa_results['outputs'] = {}
sqa_results['NAT'] = []
sqa_results['SOC'] = []
sqa_results['LAN'] = []
sqa_results['TXT'] = []
sqa_results['IMG'] = []
sqa_results['NO'] = []
sqa_results['G1-6'] = []
sqa_results['G7-12'] = []
for prob_id, prob in split_problems.items():
if prob_id not in predictions:
continue
pred = predictions[prob_id]
pred_text = pred['text']
pattern = re.compile(r'The answer is ([A-Z]).')
res = pattern.findall(pred_text)
if len(res) == 1:
answer = res[0] # 'A', 'B', ...
else:
answer = pred['pred']
pred_idx = get_pred_idx(answer, prob['choices'], args.options)
analysis = {
'question_id': prob_id,
'parsed_ans': answer,
'ground_truth': args.options[prob['answer']],
'question': pred['prompt'],
'pred': pred_text,
'is_multimodal': '<image>' in pred['prompt'],
}
sqa_results['results'][prob_id] = get_pred_idx(answer, prob['choices'], args.options)
sqa_results['outputs'][prob_id] = pred_text
if pred_idx == prob['answer']:
results['correct'].append(analysis)
cur_result = 1
else:
results['incorrect'].append(analysis)
cur_result = 0
if prob['subject'] == 'natural science':
sqa_results['NAT'].append(cur_result)
elif prob['subject'] == 'social science':
sqa_results['SOC'].append(cur_result)
elif prob['subject'] == 'language science':
sqa_results['LAN'].append(cur_result)
if prob['hint']:
sqa_results['TXT'].append(cur_result)
if prob['image']:
sqa_results['IMG'].append(cur_result)
if not prob['hint'] and not prob['image']:
sqa_results['NO'].append(cur_result)
if prob['grade'] in ['grade1', 'grade2', 'grade3', 'grade4', 'grade5', 'grade6']:
sqa_results['G1-6'].append(cur_result)
elif prob['grade'] in ['grade7', 'grade8', 'grade9', 'grade10', 'grade11', 'grade12']:
sqa_results['G7-12'].append(cur_result)
correct = len(results['correct'])
total = len(results['correct']) + len(results['incorrect'])
print(f'Total: {total}, Correct: {correct}, Accuracy: {correct / total * 100:.2f}%')
print(f'Subject NAT: {len(sqa_results["NAT"])}, Correct: {sum(sqa_results["NAT"])}, Accuracy: {np.mean(sqa_results["NAT"]) * 100:.2f}%')
print(f'Subject SOC: {len(sqa_results["SOC"])}, Correct: {sum(sqa_results["SOC"])}, Accuracy: {np.mean(sqa_results["SOC"]) * 100:.2f}%')
print(f'Subject LAN: {len(sqa_results["LAN"])}, Correct: {sum(sqa_results["LAN"])}, Accuracy: {np.mean(sqa_results["LAN"]) * 100:.2f}%')
print(f'Context Modality TXT: {len(sqa_results["TXT"])}, Correct: {sum(sqa_results["TXT"])}, Accuracy: {np.mean(sqa_results["TXT"]) * 100:.2f}%')
print(f'Context Modality IMG: {len(sqa_results["IMG"])}, Correct: {sum(sqa_results["IMG"])}, Accuracy: {np.mean(sqa_results["IMG"]) * 100:.2f}%')
print(f'Context Modality NO: {len(sqa_results["NO"])}, Correct: {sum(sqa_results["NO"])}, Accuracy: {np.mean(sqa_results["NO"]) * 100:.2f}%')
print(f'Grade G1-6: {len(sqa_results["G1-6"])}, Correct: {sum(sqa_results["G1-6"])}, Accuracy: {np.mean(sqa_results["G1-6"]) * 100:.2f}%')
print(f'Grade G7-12: {len(sqa_results["G7-12"])}, Correct: {sum(sqa_results["G7-12"])}, Accuracy: {np.mean(sqa_results["G7-12"]) * 100:.2f}%')
sqa_results['acc'] = correct / total * 100
sqa_results['correct'] = correct
sqa_results['count'] = total
with open(args.output_file, 'w') as f:
json.dump(results, f, indent=2)
with open(args.output_result, 'w') as f:
json.dump(sqa_results, f, indent=2) |