File size: 9,003 Bytes
1fea0a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import argparse
import torch
import os
import json
from tqdm import tqdm
import shortuuid
from ChatUniVi.constants import *
from ChatUniVi.conversation import conv_templates, SeparatorStyle
from ChatUniVi.model.builder import load_pretrained_model
from ChatUniVi.utils import disable_torch_init
from ChatUniVi.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
from PIL import Image
import math
from abc import ABC
import numpy as np
import jsonlines


def get_acc(file):
    acc, num = 0, 0
    yes, no, fail = 0, 0, 0
    tp, fp, fn, tn = 0, 0, 0, 0

    with open(file, "r", encoding="utf8") as f:
        for item in jsonlines.Reader(f):
            num += 1
            if "Yes" in item["text"] or "yes" in item["text"]:
                yes += 1
                if "Yes" in item["label"] or "yes" in item["label"]:
                    acc += 1
                    tp += 1
                else:
                    fp += 1

            elif "No" in item["text"] or "no" in item["text"]:
                no += 1
                if "No" in item["label"] or "no" in item["label"]:
                    acc += 1
                    tn += 1
                else:
                    fn += 1
            else:
                fail += 1

    result = {
        "acc": acc / num,
        "yes": yes / num,
        "no": no / num,
        "fail": fail / num,
        "precision": tp / (tp + fp),
        "recall": tp / (tp + fn),
    }
    result["F1-score"] = 2 * result["precision"] * result["recall"] / (result["precision"] + result["recall"])
    print("\n========================================================================")
    print(file)
    print(result)
    print("========================================================================\n")
    return result


def split_list(lst, n):
    """Split a list into n (roughly) equal-sized chunks"""
    chunk_size = math.ceil(len(lst) / n)  # integer division
    return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]


def get_chunk(lst, n, k):
    chunks = split_list(lst, n)
    return chunks[k]


class LogitsProcessor(ABC):
    """Abstract base class for all logit processors that can be applied during generation."""
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        """Torch method for processing logits."""
        raise NotImplementedError(
            f"{self.__class__} is an abstract class. Only classes inheriting this class can be called."
        )


def eval_model(args):
    # Model
    disable_torch_init()
    model_path = os.path.expanduser(args.model_path)
    model_name = "ChatUniVi"
    tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)

    mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
    mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True)
    if mm_use_im_patch_token:
        tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
    if mm_use_im_start_end:
        tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
    model.resize_token_embeddings(len(tokenizer))

    vision_tower = model.get_vision_tower()
    if not vision_tower.is_loaded:
        vision_tower.load_model()
    image_processor = vision_tower.image_processor

    questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")]
    questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
    answers_file = os.path.expanduser(args.answers_file)
    os.makedirs(os.path.dirname(answers_file), exist_ok=True)
    ans_file = open(answers_file, "w")
    for line in tqdm(questions):
        try:
            idx = line["question_id"]
            image_file = line["image"]
            qs = line["text"]
            label = line["label"]

            cur_prompt = qs
            if model.config.mm_use_im_start_end:
                qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
            else:
                qs = DEFAULT_IMAGE_TOKEN + '\n' + qs

            conv = conv_templates[args.conv_mode].copy()
            conv.append_message(conv.roles[0], qs)
            conv.append_message(conv.roles[1], None)
            prompt = conv.get_prompt()

            input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()

            image = Image.open(os.path.join(args.image_folder, image_file))

            image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]

            stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
            keywords = [stop_str]
            stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)

            if args.answer_prompter:
                with torch.inference_mode():
                    output_ids = model.generate(
                        input_ids,
                        images=image_tensor.unsqueeze(0).half().cuda(),
                        do_sample=True,
                        temperature=args.temperature,
                        top_p=args.top_p,
                        num_beams=args.num_beams,
                        max_new_tokens=1024,
                        use_cache=True,
                        stopping_criteria=[stopping_criteria]
                    )

                input_token_len = input_ids.shape[1]
                n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
                if n_diff_input_output > 0:
                    print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
                outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
                outputs = outputs.strip()
                if outputs.endswith(stop_str):
                    outputs = outputs[:-len(stop_str)]
                outputs = outputs.strip()

                outputs_reasoning = outputs
                input_ids = tokenizer_image_token(prompt + outputs_reasoning + ' The answer is ', tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()

            else:
                outputs_reasoning = ""

            with torch.inference_mode():
                output_ids = model.generate(
                    input_ids,
                    images=image_tensor.unsqueeze(0).half().cuda(),
                    do_sample=True,
                    temperature=args.temperature,
                    top_p=args.top_p,
                    num_beams=args.num_beams,
                    output_scores=True,
                    return_dict_in_generate=True,
                    max_new_tokens=1024,
                    use_cache=True,
                    stopping_criteria=[stopping_criteria]
                    )

            scores = output_ids.scores[0][0].to(torch.float32)
            label_score = []
            candidates = ["yes", "Yes", "no", "No"]
            for can in candidates:
                can_id = tokenizer.encode(can)[-1]
                label_score.append(scores[can_id].item())
            outputs = candidates[np.argmax(label_score)]

            ans_id = shortuuid.uuid()
            ans_file.write(json.dumps({"question_id": idx,
                                   "prompt": cur_prompt,
                                   "outputs_reasoning": outputs_reasoning + ' The answer is ' + outputs,
                                   "text": outputs,
                                   "label": label,
                                   "answer_id": ans_id,
                                   "model_id": model_name,
                                   "metadata": {}}) + "\n")
            ans_file.flush()
        except Exception as e:
            print(f"Error processing image file '{image_file}': {e}")
    ans_file.close()
    get_acc(answers_file)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
    parser.add_argument("--model-base", type=str, default=None)
    parser.add_argument("--image-folder", type=str, default="")
    parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
    parser.add_argument("--answers-file", type=str, default="answer.jsonl")
    parser.add_argument("--conv-mode", type=str, default="simpleqa")
    parser.add_argument("--num-chunks", type=int, default=1)
    parser.add_argument("--chunk-idx", type=int, default=0)
    parser.add_argument("--temperature", type=float, default=0.2)
    parser.add_argument("--top_p", type=float, default=None)
    parser.add_argument("--num_beams", type=int, default=1)
    parser.add_argument("--model_use", type=str, default="BASE")
    parser.add_argument("--answer-prompter", action="store_true")
    args = parser.parse_args()

    eval_model(args)