File size: 8,471 Bytes
1fea0a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import argparse
import torch
import os
import json
from tqdm import tqdm
import shortuuid
from ChatUniVi.constants import *
from ChatUniVi.conversation import conv_templates, SeparatorStyle
from ChatUniVi.model.builder import load_pretrained_model
from ChatUniVi.utils import disable_torch_init
from ChatUniVi.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
from PIL import Image
import math
from decord import VideoReader, cpu
import numpy as np


def split_list(lst, n):
    """Split a list into n (roughly) equal-sized chunks"""
    chunk_size = math.ceil(len(lst) / n)  # integer division
    return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]


def get_chunk(lst, n, k):
    chunks = split_list(lst, n)
    return chunks[k]


def _get_rawvideo_dec(video_path, image_processor, max_frames=MAX_IMAGE_LENGTH, image_resolution=224, video_framerate=1, s=None, e=None):
    # speed up video decode via decord.
    video_mask = np.zeros(max_frames, dtype=np.int64)
    max_video_length = 0

    # T x 3 x H x W
    video = np.zeros((max_frames, 3, image_resolution, image_resolution), dtype=np.float64)

    if s is None:
        start_time, end_time = None, None
    else:
        start_time = int(s)
        end_time = int(e)
        start_time = start_time if start_time >= 0. else 0.
        end_time = end_time if end_time >= 0. else 0.
        if start_time > end_time:
            start_time, end_time = end_time, start_time
        elif start_time == end_time:
            end_time = start_time + 1

    if os.path.exists(video_path):
        vreader = VideoReader(video_path, ctx=cpu(0))
    else:
        print(video_path)
        raise FileNotFoundError

    fps = vreader.get_avg_fps()
    f_start = 0 if start_time is None else int(start_time * fps)
    f_end = int(min(1000000000 if end_time is None else end_time * fps, len(vreader) - 1))
    num_frames = f_end - f_start + 1
    if num_frames > 0:
        # T x 3 x H x W
        sample_fps = int(video_framerate)
        t_stride = int(round(float(fps) / sample_fps))

        all_pos = list(range(f_start, f_end + 1, t_stride))
        if len(all_pos) > max_frames:
            sample_pos = [all_pos[_] for _ in np.linspace(0, len(all_pos) - 1, num=max_frames, dtype=int)]
        else:
            sample_pos = all_pos

        patch_images = [Image.fromarray(f) for f in vreader.get_batch(sample_pos).asnumpy()]

        patch_images = torch.stack([image_processor.preprocess(img, return_tensors='pt')['pixel_values'][0] for img in patch_images])
        slice_len = patch_images.shape[0]

        max_video_length = max_video_length if max_video_length > slice_len else slice_len
        if slice_len < 1:
            pass
        else:
            video[:slice_len, ...] = patch_images

        return patch_images, video_mask
    else:
        print("video path: {} error.".format(video_path))

    video_mask[:max_video_length] = [1] * max_video_length

    return torch.from_numpy(video), video_mask


def eval_model(args):
    # Model
    disable_torch_init()
    model_path = os.path.expanduser(args.model_path)
    model_name = "ChatUniVi"
    tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)

    mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
    mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True)
    if mm_use_im_patch_token:
        tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
    if mm_use_im_start_end:
        tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
    model.resize_token_embeddings(len(tokenizer))

    vision_tower = model.get_vision_tower()
    if not vision_tower.is_loaded:
        vision_tower.load_model()
    image_processor = vision_tower.image_processor

    if model.config.config["use_cluster"]:
        for n, m in model.named_modules():
            m = m.to(dtype=torch.bfloat16)

    # Load the ground truth file
    with open(args.question_file) as file:
        gt_contents = json.load(file)

    answers_file = os.path.expanduser(args.answers_file)
    os.makedirs(os.path.dirname(answers_file), exist_ok=True)
    ans_file = open(answers_file, "w")

    video_formats = ['.mp4', '.avi', '.mov', '.mkv']

    # Iterate over each sample in the ground truth file
    for sample in tqdm(gt_contents):
        video_name = sample['video_name']
        sample_set = sample
        qs = sample['Q']

        # Load the video file
        for fmt in video_formats:  # Added this line
            temp_path = os.path.join(args.video_folder, f"{video_name}{fmt}")
            if os.path.exists(temp_path):
                video_path = temp_path
                break

        # Check if the video exists
        if video_path is not None:  # Modified this line
            video_frames, _ = _get_rawvideo_dec(video_path, image_processor, max_frames=MAX_IMAGE_LENGTH)

        try:
            cur_prompt = qs
            if model.config.mm_use_im_start_end:
                qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN * MAX_IMAGE_LENGTH + DEFAULT_IM_END_TOKEN + '\n' + qs
            else:
                qs = DEFAULT_IMAGE_TOKEN * MAX_IMAGE_LENGTH + '\n' + qs

            conv = conv_templates[args.conv_mode].copy()
            conv.append_message(conv.roles[0], qs)
            conv.append_message(conv.roles[1], None)
            prompt = conv.get_prompt()

            input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(
                0).cuda()

            stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
            keywords = [stop_str]
            stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)

            with torch.inference_mode():
                output_ids = model.generate(
                    input_ids,
                    images=video_frames.half().cuda(),
                    do_sample=True,
                    temperature=args.temperature,
                    top_p=args.top_p,
                    num_beams=args.num_beams,
                    max_new_tokens=1024,
                    use_cache=True,
                    stopping_criteria=[stopping_criteria])

            input_token_len = input_ids.shape[1]
            n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
            if n_diff_input_output > 0:
                print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
            outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
            outputs = outputs.strip()
            if outputs.endswith(stop_str):
                outputs = outputs[:-len(stop_str)]
            outputs = outputs.strip()

            ans_id = shortuuid.uuid()
            ans_file.write(json.dumps({'video_name': sample['video_name'],
                                       "prompt": cur_prompt,
                                       "text": outputs,
                                       "answer_id": ans_id,
                                       "model_id": model_name,
                                       "answer": sample['A'],
                                       "metadata": {}}) + "\n")
            ans_file.flush()
        except Exception as e:
            print(f"Error processing video file '{video_name}': {e}")

    ans_file.close()


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
    parser.add_argument("--model-base", type=str, default=None)
    parser.add_argument("--video-folder", type=str, default="")
    parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
    parser.add_argument("--answers-file", type=str, default="answer.jsonl")
    parser.add_argument("--conv-mode", type=str, default="v1")
    parser.add_argument("--num-chunks", type=int, default=1)
    parser.add_argument("--chunk-idx", type=int, default=0)
    parser.add_argument("--temperature", type=float, default=0.2)
    parser.add_argument("--top_p", type=float, default=None)
    parser.add_argument("--num_beams", type=int, default=1)
    parser.add_argument("--model_use", type=str, default="BASE")
    args = parser.parse_args()

    eval_model(args)