import argparse import json import os import re import random import numpy as np def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--base-dir', type=str) parser.add_argument('--result-file', type=str) parser.add_argument('--output-file', type=str) parser.add_argument('--output-result', type=str) parser.add_argument('--split', type=str, default='test') parser.add_argument('--options', type=list, default=["A", "B", "C", "D", "E"]) return parser.parse_args() def convert_caps(results): fakecaps = [] for result in results: image_id = result['question_id'] caption = result['text'] fakecaps.append({"image_id": int(image_id), "caption": caption}) return fakecaps def get_pred_idx(prediction, choices, options): """ Get the index (e.g. 2) from the prediction (e.g. 'C') """ if prediction in options[:len(choices)]: return options.index(prediction) else: return random.choice(range(len(choices))) if __name__ == "__main__": args = get_args() base_dir = args.base_dir split_indices = json.load(open(os.path.join(base_dir, "pid_splits.json")))[args.split] problems = json.load(open(os.path.join(base_dir, "problems.json"))) predictions = [json.loads(line) for line in open(args.result_file)] predictions = {pred['question_id']: pred for pred in predictions} split_problems = {idx: problems[idx] for idx in split_indices} results = {'correct': [], 'incorrect': []} sqa_results = {} sqa_results['acc'] = None sqa_results['correct'] = None sqa_results['count'] = None sqa_results['results'] = {} sqa_results['outputs'] = {} sqa_results['NAT'] = [] sqa_results['SOC'] = [] sqa_results['LAN'] = [] sqa_results['TXT'] = [] sqa_results['IMG'] = [] sqa_results['NO'] = [] sqa_results['G1-6'] = [] sqa_results['G7-12'] = [] for prob_id, prob in split_problems.items(): if prob_id not in predictions: continue pred = predictions[prob_id] pred_text = pred['text'] pattern = re.compile(r'The answer is ([A-Z]).') res = pattern.findall(pred_text) if len(res) == 1: answer = res[0] # 'A', 'B', ... else: answer = pred['pred'] pred_idx = get_pred_idx(answer, prob['choices'], args.options) analysis = { 'question_id': prob_id, 'parsed_ans': answer, 'ground_truth': args.options[prob['answer']], 'question': pred['prompt'], 'pred': pred_text, 'is_multimodal': '' in pred['prompt'], } sqa_results['results'][prob_id] = get_pred_idx(answer, prob['choices'], args.options) sqa_results['outputs'][prob_id] = pred_text if pred_idx == prob['answer']: results['correct'].append(analysis) cur_result = 1 else: results['incorrect'].append(analysis) cur_result = 0 if prob['subject'] == 'natural science': sqa_results['NAT'].append(cur_result) elif prob['subject'] == 'social science': sqa_results['SOC'].append(cur_result) elif prob['subject'] == 'language science': sqa_results['LAN'].append(cur_result) if prob['hint']: sqa_results['TXT'].append(cur_result) if prob['image']: sqa_results['IMG'].append(cur_result) if not prob['hint'] and not prob['image']: sqa_results['NO'].append(cur_result) if prob['grade'] in ['grade1', 'grade2', 'grade3', 'grade4', 'grade5', 'grade6']: sqa_results['G1-6'].append(cur_result) elif prob['grade'] in ['grade7', 'grade8', 'grade9', 'grade10', 'grade11', 'grade12']: sqa_results['G7-12'].append(cur_result) correct = len(results['correct']) total = len(results['correct']) + len(results['incorrect']) print(f'Total: {total}, Correct: {correct}, Accuracy: {correct / total * 100:.2f}%') print(f'Subject NAT: {len(sqa_results["NAT"])}, Correct: {sum(sqa_results["NAT"])}, Accuracy: {np.mean(sqa_results["NAT"]) * 100:.2f}%') print(f'Subject SOC: {len(sqa_results["SOC"])}, Correct: {sum(sqa_results["SOC"])}, Accuracy: {np.mean(sqa_results["SOC"]) * 100:.2f}%') print(f'Subject LAN: {len(sqa_results["LAN"])}, Correct: {sum(sqa_results["LAN"])}, Accuracy: {np.mean(sqa_results["LAN"]) * 100:.2f}%') print(f'Context Modality TXT: {len(sqa_results["TXT"])}, Correct: {sum(sqa_results["TXT"])}, Accuracy: {np.mean(sqa_results["TXT"]) * 100:.2f}%') print(f'Context Modality IMG: {len(sqa_results["IMG"])}, Correct: {sum(sqa_results["IMG"])}, Accuracy: {np.mean(sqa_results["IMG"]) * 100:.2f}%') print(f'Context Modality NO: {len(sqa_results["NO"])}, Correct: {sum(sqa_results["NO"])}, Accuracy: {np.mean(sqa_results["NO"]) * 100:.2f}%') print(f'Grade G1-6: {len(sqa_results["G1-6"])}, Correct: {sum(sqa_results["G1-6"])}, Accuracy: {np.mean(sqa_results["G1-6"]) * 100:.2f}%') print(f'Grade G7-12: {len(sqa_results["G7-12"])}, Correct: {sum(sqa_results["G7-12"])}, Accuracy: {np.mean(sqa_results["G7-12"]) * 100:.2f}%') sqa_results['acc'] = correct / total * 100 sqa_results['correct'] = correct sqa_results['count'] = total with open(args.output_file, 'w') as f: json.dump(results, f, indent=2) with open(args.output_result, 'w') as f: json.dump(sqa_results, f, indent=2)