import torch import os from ChatUniVi.constants import * from ChatUniVi.conversation import conv_templates, SeparatorStyle from ChatUniVi.model.builder import load_pretrained_model from ChatUniVi.utils import disable_torch_init from ChatUniVi.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria from PIL import Image if __name__ == '__main__': # Model Parameter model_path = ${model_path} image_path = ${image_path} # Input Text qs = "Describe the image." # Sampling Parameter conv_mode = "simple" temperature = 0.2 top_p = None num_beams = 1 disable_torch_init() model_path = os.path.expanduser(model_path) model_name = "ChatUniVi" tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name) mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True) if mm_use_im_patch_token: tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) if mm_use_im_start_end: tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) model.resize_token_embeddings(len(tokenizer)) vision_tower = model.get_vision_tower() if not vision_tower.is_loaded: vision_tower.load_model() image_processor = vision_tower.image_processor # Check if the video exists if image_path is not None: cur_prompt = qs if model.config.mm_use_im_start_end: qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs else: qs = DEFAULT_IMAGE_TOKEN + '\n' + qs conv = conv_templates[conv_mode].copy() conv.append_message(conv.roles[0], qs) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() image = Image.open(image_path) image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0] stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 keywords = [stop_str] stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) with torch.inference_mode(): output_ids = model.generate( input_ids, images=image_tensor.unsqueeze(0).half().cuda(), do_sample=True, temperature=temperature, top_p=top_p, num_beams=num_beams, max_new_tokens=1024, use_cache=True, stopping_criteria=[stopping_criteria]) input_token_len = input_ids.shape[1] n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item() if n_diff_input_output > 0: print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids') outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0] outputs = outputs.strip() if outputs.endswith(stop_str): outputs = outputs[:-len(stop_str)] outputs = outputs.strip() print(outputs)