Initial commit
Browse files- .gitattributes +1 -0
- README.md +83 -0
- args.yml +83 -0
- config.yml +25 -0
- dqn-FrozenLake-v1.zip +3 -0
- dqn-FrozenLake-v1/_stable_baselines3_version +1 -0
- dqn-FrozenLake-v1/data +117 -0
- dqn-FrozenLake-v1/policy.optimizer.pth +3 -0
- dqn-FrozenLake-v1/policy.pth +3 -0
- dqn-FrozenLake-v1/pytorch_variables.pth +3 -0
- dqn-FrozenLake-v1/system_info.txt +9 -0
- env_kwargs.yml +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- FrozenLake-v1
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: DQN
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: FrozenLake-v1
|
16 |
+
type: FrozenLake-v1
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 0.40 +/- 0.49
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **DQN** Agent playing **FrozenLake-v1**
|
25 |
+
This is a trained model of a **DQN** agent playing **FrozenLake-v1**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
+
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
+
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
+
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo dqn --env FrozenLake-v1 -orga Manohar2k -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo dqn --env FrozenLake-v1 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo dqn --env FrozenLake-v1 -orga Manohar2k -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo dqn --env FrozenLake-v1 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo dqn --env FrozenLake-v1 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo dqn --env FrozenLake-v1 -f logs/ -orga Manohar2k
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
+
```python
|
65 |
+
OrderedDict([('batch_size', 32),
|
66 |
+
('buffer_size', 100000),
|
67 |
+
('exploration_final_eps', 0.01),
|
68 |
+
('exploration_fraction', 0.1),
|
69 |
+
('gradient_steps', 1),
|
70 |
+
('learning_rate', 0.0001),
|
71 |
+
('learning_starts', 1000),
|
72 |
+
('n_timesteps', 100000.0),
|
73 |
+
('optimize_memory_usage', False),
|
74 |
+
('policy', 'MlpPolicy'),
|
75 |
+
('target_update_interval', 1000),
|
76 |
+
('train_freq', 4),
|
77 |
+
('normalize', False)])
|
78 |
+
```
|
79 |
+
|
80 |
+
# Environment Arguments
|
81 |
+
```python
|
82 |
+
{'render_mode': 'rgb_array'}
|
83 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- dqn
|
4 |
+
- - conf_file
|
5 |
+
- fl_dqn.yml
|
6 |
+
- - device
|
7 |
+
- auto
|
8 |
+
- - env
|
9 |
+
- FrozenLake-v1
|
10 |
+
- - env_kwargs
|
11 |
+
- null
|
12 |
+
- - eval_env_kwargs
|
13 |
+
- null
|
14 |
+
- - eval_episodes
|
15 |
+
- 5
|
16 |
+
- - eval_freq
|
17 |
+
- 25000
|
18 |
+
- - gym_packages
|
19 |
+
- []
|
20 |
+
- - hyperparams
|
21 |
+
- null
|
22 |
+
- - log_folder
|
23 |
+
- fl_logs/
|
24 |
+
- - log_interval
|
25 |
+
- -1
|
26 |
+
- - max_total_trials
|
27 |
+
- null
|
28 |
+
- - n_eval_envs
|
29 |
+
- 1
|
30 |
+
- - n_evaluations
|
31 |
+
- null
|
32 |
+
- - n_jobs
|
33 |
+
- 1
|
34 |
+
- - n_startup_trials
|
35 |
+
- 10
|
36 |
+
- - n_timesteps
|
37 |
+
- -1
|
38 |
+
- - n_trials
|
39 |
+
- 500
|
40 |
+
- - no_optim_plots
|
41 |
+
- false
|
42 |
+
- - num_threads
|
43 |
+
- -1
|
44 |
+
- - optimization_log_path
|
45 |
+
- null
|
46 |
+
- - optimize_hyperparameters
|
47 |
+
- false
|
48 |
+
- - progress
|
49 |
+
- false
|
50 |
+
- - pruner
|
51 |
+
- median
|
52 |
+
- - sampler
|
53 |
+
- tpe
|
54 |
+
- - save_freq
|
55 |
+
- -1
|
56 |
+
- - save_replay_buffer
|
57 |
+
- false
|
58 |
+
- - seed
|
59 |
+
- 2127820839
|
60 |
+
- - storage
|
61 |
+
- null
|
62 |
+
- - study_name
|
63 |
+
- null
|
64 |
+
- - tensorboard_log
|
65 |
+
- ''
|
66 |
+
- - track
|
67 |
+
- false
|
68 |
+
- - trained_agent
|
69 |
+
- ''
|
70 |
+
- - truncate_last_trajectory
|
71 |
+
- true
|
72 |
+
- - uuid
|
73 |
+
- false
|
74 |
+
- - vec_env
|
75 |
+
- dummy
|
76 |
+
- - verbose
|
77 |
+
- 1
|
78 |
+
- - wandb_entity
|
79 |
+
- null
|
80 |
+
- - wandb_project_name
|
81 |
+
- sb3
|
82 |
+
- - wandb_tags
|
83 |
+
- []
|
config.yml
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 32
|
4 |
+
- - buffer_size
|
5 |
+
- 100000
|
6 |
+
- - exploration_final_eps
|
7 |
+
- 0.01
|
8 |
+
- - exploration_fraction
|
9 |
+
- 0.1
|
10 |
+
- - gradient_steps
|
11 |
+
- 1
|
12 |
+
- - learning_rate
|
13 |
+
- 0.0001
|
14 |
+
- - learning_starts
|
15 |
+
- 1000
|
16 |
+
- - n_timesteps
|
17 |
+
- 100000.0
|
18 |
+
- - optimize_memory_usage
|
19 |
+
- false
|
20 |
+
- - policy
|
21 |
+
- MlpPolicy
|
22 |
+
- - target_update_interval
|
23 |
+
- 1000
|
24 |
+
- - train_freq
|
25 |
+
- 4
|
dqn-FrozenLake-v1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b8f33630f814dc6304d7af98175dff3d262003cde9554f977df5807854cc835b
|
3 |
+
size 115453
|
dqn-FrozenLake-v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.4.0a7
|
dqn-FrozenLake-v1/data
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.dqn.policies",
|
6 |
+
"__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}",
|
7 |
+
"__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
8 |
+
"__init__": "<function DQNPolicy.__init__ at 0x7df0cfe0b910>",
|
9 |
+
"_build": "<function DQNPolicy._build at 0x7df0cfe0b9a0>",
|
10 |
+
"make_q_net": "<function DQNPolicy.make_q_net at 0x7df0cfe0ba30>",
|
11 |
+
"forward": "<function DQNPolicy.forward at 0x7df0cfe0bac0>",
|
12 |
+
"_predict": "<function DQNPolicy._predict at 0x7df0cfe0bb50>",
|
13 |
+
"_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7df0cfe0bbe0>",
|
14 |
+
"set_training_mode": "<function DQNPolicy.set_training_mode at 0x7df0cfe0bc70>",
|
15 |
+
"__abstractmethods__": "frozenset()",
|
16 |
+
"_abc_impl": "<_abc._abc_data object at 0x7df0cfe24400>"
|
17 |
+
},
|
18 |
+
"verbose": 1,
|
19 |
+
"policy_kwargs": {},
|
20 |
+
"num_timesteps": 13551,
|
21 |
+
"_total_timesteps": 100000,
|
22 |
+
"_num_timesteps_at_start": 0,
|
23 |
+
"seed": 0,
|
24 |
+
"action_noise": null,
|
25 |
+
"start_time": 1728003010908680126,
|
26 |
+
"learning_rate": {
|
27 |
+
":type:": "<class 'function'>",
|
28 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuFQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
29 |
+
},
|
30 |
+
"tensorboard_log": null,
|
31 |
+
"_last_obs": null,
|
32 |
+
"_last_episode_starts": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_original_obs": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAA4AAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBhZSMAUOUdJRSlC4="
|
39 |
+
},
|
40 |
+
"_episode_num": 893,
|
41 |
+
"use_sde": false,
|
42 |
+
"sde_sample_freq": -1,
|
43 |
+
"_current_progress_remaining": 0.86449,
|
44 |
+
"_stats_window_size": 100,
|
45 |
+
"ep_info_buffer": {
|
46 |
+
":type:": "<class 'collections.deque'>",
|
47 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHP/AAAAAAAACMAWyUSxWMAXSUR0AkPvze40/GdX2UKGgGRwAAAAAAAAAAaAdLL2gIR0AkXROUMXrMdX2UKGgGRz/wAAAAAAAAaAdLEGgIR0AkZufmLcbjdX2UKGgGRwAAAAAAAAAAaAdLD2gIR0AkcQhfShJzdX2UKGgGRwAAAAAAAAAAaAdLBmgIR0Akc8ifQKKHdX2UKGgGRz/wAAAAAAAAaAdLFWgIR0Akf8Z1mrbQdX2UKGgGRwAAAAAAAAAAaAdLImgIR0AkloUzsQd0dX2UKGgGRwAAAAAAAAAAaAdLZGgIR0Ak0/8l5WzXdX2UKGgGRz/wAAAAAAAAaAdLEGgIR0Ak3xlQMx46dX2UKGgGRwAAAAAAAAAAaAdLDWgIR0Ak5pCa7VawdX2UKGgGRz/wAAAAAAAAaAdLEWgIR0Ak8KWLP2PDdX2UKGgGRz/wAAAAAAAAaAdLIWgIR0AlBKU3XI2gdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0AlQyM1jy4GdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0AlhLr5ZbIMdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0AlyLx7RfF8dX2UKGgGRwAAAAAAAAAAaAdLI2gIR0Al3XumaYu1dX2UKGgGRwAAAAAAAAAAaAdLCmgIR0Al5AP/aQFLdX2UKGgGRwAAAAAAAAAAaAdLFGgIR0Al8BU70WdmdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0AmLTx5LRKIdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0Amb1loUSIydX2UKGgGRwAAAAAAAAAAaAdLWGgIR0AmqMKCxu89dX2UKGgGRwAAAAAAAAAAaAdLHWgIR0Amuan752yLdX2UKGgGRz/wAAAAAAAAaAdLDGgIR0AmwQPI4lyBdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0Am/07KaG5+dX2UKGgGRwAAAAAAAAAAaAdLZGgIR0AnPUUfxMFmdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0AnfjLjghr4dX2UKGgGRwAAAAAAAAAAaAdLZGgIR0AnwSSvC/GmdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0An/t78ejmCdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0AoPocJdB0IdX2UKGgGRz/wAAAAAAAAaAdLQ2gIR0AoaqyWzF/AdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0AoqR6F/QSjdX2UKGgGRz/wAAAAAAAAaAdLRmgIR0Ao0qtHQQcxdX2UKGgGRz/wAAAAAAAAaAdLL2gIR0Ao8FkhA4XGdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0ApK83dbgTAdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0ApauanaWX1dX2UKGgGRz/wAAAAAAAAaAdLLmgIR0ApiNUfgaWHdX2UKGgGRz/wAAAAAAAAaAdLGGgIR0Apl8PWhAW0dX2UKGgGRwAAAAAAAAAAaAdLSWgIR0ApyL5ylvZRdX2UKGgGRz/wAAAAAAAAaAdLQ2gIR0Ap8mHgxagVdX2UKGgGRwAAAAAAAAAAaAdLFWgIR0Ap/wCKaXrudX2UKGgGRwAAAAAAAAAAaAdLFmgIR0AqC25xzaK2dX2UKGgGRwAAAAAAAAAAaAdLIGgIR0AqH2M85jpcdX2UKGgGRz/wAAAAAAAAaAdLHWgIR0AqM4/eLvTgdX2UKGgGRwAAAAAAAAAAaAdLCGgIR0AqOJPZZjhDdX2UKGgGRz/wAAAAAAAAaAdLEWgIR0AqQqOtGNJfdX2UKGgGRz/wAAAAAAAAaAdLPGgIR0AqZ8baRISUdX2UKGgGRz/wAAAAAAAAaAdLPmgIR0AqkJoCdSVGdX2UKGgGRz/wAAAAAAAAaAdLEWgIR0AqnGe+VTrFdX2UKGgGRz/wAAAAAAAAaAdLFWgIR0AqqUL2HtWudX2UKGgGRwAAAAAAAAAAaAdLZGgIR0Aq6GwiaAnVdX2UKGgGRwAAAAAAAAAAaAdLM2gIR0ArCVE/jbSJdX2UKGgGRwAAAAAAAAAAaAdLNWgIR0ArK9sabWmQdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0Ara7TUiILxdX2UKGgGRwAAAAAAAAAAaAdLZGgIR0ArqpF1B+nZdX2UKGgGRz/wAAAAAAAAaAdLHWgIR0ArvfTkQwsYdX2UKGgGRz/wAAAAAAAAaAdLC2gIR0Arx85S3soldX2UKGgGRz/wAAAAAAAAaAdLGGgIR0Ar1psXSBsidX2UKGgGRz/wAAAAAAAAaAdLTGgIR0AsBOCXhOxjdX2UKGgGRwAAAAAAAAAAaAdLDmgIR0AsDKDCgsbvdX2UKGgGRz/wAAAAAAAAaAdLOmgIR0AsMUUwi7kGdX2UKGgGRz/wAAAAAAAAaAdLG2gIR0AsQvovBacJdX2UKGgGRz/wAAAAAAAAaAdLJGgIR0AsWyk9ECvHdX2UKGgGRwAAAAAAAAAAaAdLMWgIR0AsehdMTN+tdX2UKGgGRz/wAAAAAAAAaAdLD2gIR0Asg+TvAoG6dX2UKGgGRwAAAAAAAAAAaAdLHWgIR0AslhtLteD4dX2UKGgGRwAAAAAAAAAAaAdLBGgIR0AsmKEWZZ0TdX2UKGgGRwAAAAAAAAAAaAdLEWgIR0AsosvIwM6SdX2UKGgGRz/wAAAAAAAAaAdLSGgIR0As0bp/wy6+dX2UKGgGRz/wAAAAAAAAaAdLXmgIR0AtFaMaS9uhdX2UKGgGRwAAAAAAAAAAaAdLN2gIR0AtN4Y77sOYdX2UKGgGRz/wAAAAAAAAaAdLDGgIR0AtPrIHTqjadX2UKGgGRwAAAAAAAAAAaAdLEGgIR0AtSKeCkGiYdX2UKGgGRwAAAAAAAAAAaAdLDmgIR0AtUZqmCROldX2UKGgGRwAAAAAAAAAAaAdLLGgIR0AtbgpBomG/dX2UKGgGRwAAAAAAAAAAaAdLZGgIR0AtqrJ8v24/dX2UKGgGRwAAAAAAAAAAaAdLT2gIR0At4MQVbiZOdX2UKGgGRz/wAAAAAAAAaAdLFmgIR0At7aOgg5imdX2UKGgGRz/wAAAAAAAAaAdLHWgIR0At/zU7Sy+pdX2UKGgGRwAAAAAAAAAAaAdLQWgIR0AuKILPUrkKdX2UKGgGRwAAAAAAAAAAaAdLCmgIR0AuLnSv1UVBdX2UKGgGRwAAAAAAAAAAaAdLI2gIR0AuRBTn7pFDdX2UKGgGRz/wAAAAAAAAaAdLDWgIR0AuTiKBNEgGdX2UKGgGRwAAAAAAAAAAaAdLEWgIR0AuWIToMa0hdX2UKGgGRwAAAAAAAAAAaAdLCWgIR0AuX0g8r7O3dX2UKGgGRwAAAAAAAAAAaAdLK2gIR0AueatLcsUZdX2UKGgGRz/wAAAAAAAAaAdLE2gIR0AuhaTOgQHzdX2UKGgGRwAAAAAAAAAAaAdLKmgIR0Auoqm0mdAgdX2UKGgGRz/wAAAAAAAAaAdLH2gIR0Aut53Tuv2XdX2UKGgGRz/wAAAAAAAAaAdLPmgIR0Au3nwob4rSdX2UKGgGRwAAAAAAAAAAaAdLQ2gIR0AvCbZvkzXSdX2UKGgGRz/wAAAAAAAAaAdLGGgIR0AvGHlfZ26kdX2UKGgGRz/wAAAAAAAAaAdLI2gIR0AvLRlYlpoLdX2UKGgGRz/wAAAAAAAAaAdLFGgIR0AvOS5AhStOdX2UKGgGRwAAAAAAAAAAaAdLK2gIR0AvVCl7+kxidX2UKGgGRwAAAAAAAAAAaAdLFWgIR0AvYKziS7oTdX2UKGgGRz/wAAAAAAAAaAdLH2gIR0AvdYNiH6/JdX2UKGgGRz/wAAAAAAAAaAdLImgIR0AvjMewLVnVdX2UKGgGRz/wAAAAAAAAaAdLQmgIR0AvtyxRl6JJdX2UKGgGRz/wAAAAAAAAaAdLO2gIR0Av4QxN7BwddX2UKGgGRwAAAAAAAAAAaAdLI2gIR0Av+Bmwqy4XdWUu"
|
48 |
+
},
|
49 |
+
"ep_success_buffer": {
|
50 |
+
":type:": "<class 'collections.deque'>",
|
51 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
52 |
+
},
|
53 |
+
"_n_updates": 3137,
|
54 |
+
"observation_space": {
|
55 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
56 |
+
":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
57 |
+
"n": "16",
|
58 |
+
"start": "0",
|
59 |
+
"_shape": [],
|
60 |
+
"dtype": "int64",
|
61 |
+
"_np_random": null
|
62 |
+
},
|
63 |
+
"action_space": {
|
64 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
65 |
+
":serialized:": "gAWVwAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaB+MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCqKEONhlaa3XlgJLUWWWTS1oRqMA2luY5SKEKlzeES8M4FYghr3OtvajUF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
|
66 |
+
"n": "4",
|
67 |
+
"start": "0",
|
68 |
+
"_shape": [],
|
69 |
+
"dtype": "int64",
|
70 |
+
"_np_random": "Generator(PCG64)"
|
71 |
+
},
|
72 |
+
"n_envs": 1,
|
73 |
+
"buffer_size": 1,
|
74 |
+
"batch_size": 32,
|
75 |
+
"learning_starts": 1000,
|
76 |
+
"tau": 1.0,
|
77 |
+
"gamma": 0.99,
|
78 |
+
"gradient_steps": 1,
|
79 |
+
"optimize_memory_usage": false,
|
80 |
+
"replay_buffer_class": {
|
81 |
+
":type:": "<class 'abc.ABCMeta'>",
|
82 |
+
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
83 |
+
"__module__": "stable_baselines3.common.buffers",
|
84 |
+
"__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}",
|
85 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
86 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7df0cff51120>",
|
87 |
+
"add": "<function ReplayBuffer.add at 0x7df0cff511b0>",
|
88 |
+
"sample": "<function ReplayBuffer.sample at 0x7df0cff51240>",
|
89 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7df0cff512d0>",
|
90 |
+
"_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7df0cff51360>)>",
|
91 |
+
"__abstractmethods__": "frozenset()",
|
92 |
+
"_abc_impl": "<_abc._abc_data object at 0x7df0d00d15c0>"
|
93 |
+
},
|
94 |
+
"replay_buffer_kwargs": {},
|
95 |
+
"train_freq": {
|
96 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
97 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
98 |
+
},
|
99 |
+
"use_sde_at_warmup": false,
|
100 |
+
"exploration_initial_eps": 1.0,
|
101 |
+
"exploration_final_eps": 0.01,
|
102 |
+
"exploration_fraction": 0.1,
|
103 |
+
"target_update_interval": 1000,
|
104 |
+
"_n_calls": 13551,
|
105 |
+
"max_grad_norm": 10,
|
106 |
+
"exploration_rate": 0.01,
|
107 |
+
"lr_schedule": {
|
108 |
+
":type:": "<class 'function'>",
|
109 |
+
":serialized:": "gAWVewQAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwIPGxhbWJkYT6US2FDAgwAlIwOdmFsdWVfc2NoZWR1bGWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgPjAxfX3F1YWxuYW1lX1+UjCFnZXRfc2NoZWR1bGVfZm4uPGxvY2Fscz4uPGxhbWJkYT6UjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOUaAIoaAcoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuFQwIEAZSMA3ZhbJSFlCl0lFKUfZQoaBaMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpRoGIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlGgajEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgdKVKUhZR0lFKUaCRoRH2UfZQoaBhoN2gnjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlGgpfZRoK05oLE5oLWg/aC5OaC9oMUc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwhZRSlIWUaExdlGhOfZR1hpSGUjAu"
|
110 |
+
},
|
111 |
+
"batch_norm_stats": [],
|
112 |
+
"batch_norm_stats_target": [],
|
113 |
+
"exploration_schedule": {
|
114 |
+
":type:": "<class 'function'>",
|
115 |
+
":serialized:": "gAWVZQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyhkAXwAGACIAWsEcgiIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLc0MGDAEEARgClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgdKVKUaB0pUpSHlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBhoDYwMX19xdWFsbmFtZV9flIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgKjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC91jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/hHrhR64Ue4WUUpRoN0c/uZmZmZmZmoWUUpRoN0c/8AAAAAAAAIWUUpSHlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
116 |
+
}
|
117 |
+
}
|
dqn-FrozenLake-v1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9023e780ca1fe01fc07b847e78477710383313a9d5ff5698852cc5a9540ff354
|
3 |
+
size 49504
|
dqn-FrozenLake-v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7be37baa259cb3b82f284953b47712403402e5e2202688d18fa94dabb6f334a6
|
3 |
+
size 48562
|
dqn-FrozenLake-v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
dqn-FrozenLake-v1/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.4.0a7
|
4 |
+
- PyTorch: 2.4.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
render_mode: rgb_array
|
replay.mp4
ADDED
Binary file (455 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 0.4, "std_reward": 0.48989794855663565, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-10-04T00:50:38.207105"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2004005212e704199cd8653192a7f353ff90b709ea1286cc8be472ff2d13b30b
|
3 |
+
size 14932
|