File size: 3,515 Bytes
5f94711 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": [],
"gpuType": "T4"
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
},
"accelerator": "GPU"
},
"cells": [
{
"cell_type": "code",
"source": [
"from google.colab import drive\n",
"drive.mount('/content/drive')"
],
"metadata": {
"id": "fZnNN5kHlpVa"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"%cd /content/files"
],
"metadata": {
"id": "3FNd407Xmmmf"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"!pip install -U bitsandbytes\n"
],
"metadata": {
"id": "JUhd_t-7pDYY"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "puAjgEBAlYN0"
},
"outputs": [],
"source": [
"# Install required packages\n",
"!pip install torch transformers safetensors accelerate\n",
"\n",
"import torch\n",
"from transformers import AutoModelForCausalLM, AutoTokenizer\n",
"import json\n",
"\n",
"class ChatBot:\n",
" def __init__(self, model_path):\n",
" # Initialize tokenizer and model\n",
" self.tokenizer = AutoTokenizer.from_pretrained(model_path)\n",
" self.model = AutoModelForCausalLM.from_pretrained(\n",
" model_path,\n",
" device_map=\"auto\",\n",
" torch_dtype=torch.float16\n",
" )\n",
"\n",
" def chat(self, user_input, max_length=1000):\n",
" # Prepare input\n",
" inputs = self.tokenizer(user_input, return_tensors=\"pt\").to(self.model.device)\n",
"\n",
" # Generate response\n",
" with torch.no_grad():\n",
" outputs = self.model.generate(\n",
" **inputs,\n",
" max_length=max_length,\n",
" num_return_sequences=1,\n",
" temperature=0.7,\n",
" do_sample=True,\n",
" pad_token_id=self.tokenizer.eos_token_id\n",
" )\n",
"\n",
" # Decode and return response\n",
" response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)\n",
" return response\n",
"\n",
"# Simple chat interface\n",
"def start_chat():\n",
" print(\"Initializing chatbot... This may take a few minutes.\")\n",
" chatbot = ChatBot(\"/content/files\") # Use the directory containing model files\n",
"\n",
" print(\"\\nChat initialized! Type 'quit' to exit.\")\n",
" while True:\n",
" user_input = input(\"\\nYou: \")\n",
" if user_input.lower() == 'quit':\n",
" break\n",
"\n",
" response = chatbot.chat(user_input)\n",
" print(f\"\\nBot: {response}\")\n",
"\n",
"# Start the chat\n",
"if __name__ == \"__main__\":\n",
" start_chat()"
]
}
]
} |