File size: 2,298 Bytes
7bbfe0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
base_model: google/pegasus-large
tags:
- generated_from_trainer
metrics:
- rouge
- bleu
model-index:
- name: LifeSciencePegasusLargeModel
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# LifeSciencePegasusLargeModel
This model is a fine-tuned version of [google/pegasus-large](https://huggingface.co/google/pegasus-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 5.6523
- Rouge1: 44.7761
- Rouge2: 12.6726
- Rougel: 29.0847
- Rougelsum: 40.7566
- Bertscore Precision: 77.9283
- Bertscore Recall: 81.5854
- Bertscore F1: 79.7092
- Bleu: 0.0886
- Gen Len: 225.7220
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bertscore Precision | Bertscore Recall | Bertscore F1 | Bleu | Gen Len |
|:-------------:|:------:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------------------:|:----------------:|:------------:|:------:|:--------:|
| 6.2586 | 0.2643 | 300 | 6.0453 | 40.1947 | 11.1082 | 26.9714 | 36.2747 | 76.6344 | 80.8385 | 78.6731 | 0.0775 | 225.7220 |
| 6.0213 | 0.5286 | 600 | 5.7899 | 43.2445 | 12.1722 | 28.4564 | 39.1524 | 77.5194 | 81.3755 | 79.3945 | 0.0856 | 225.7220 |
| 5.9018 | 0.7929 | 900 | 5.6523 | 44.7761 | 12.6726 | 29.0847 | 40.7566 | 77.9283 | 81.5854 | 79.7092 | 0.0886 | 225.7220 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.1.2
- Datasets 2.2.1
- Tokenizers 0.19.1
|