MarcosAutuori commited on
Commit
6b60e69
·
verified ·
1 Parent(s): dd15108

Training_02 complete

Browse files
Files changed (1) hide show
  1. README.md +13 -15
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  license: apache-2.0
3
- base_model: bert-base-cased
4
  tags:
5
  - generated_from_trainer
6
  datasets:
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.9383823285168577
29
  - name: Recall
30
  type: recall
31
- value: 0.9508582968697409
32
  - name: F1
33
  type: f1
34
- value: 0.9445791189500962
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.9864013657502796
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -42,13 +42,13 @@ should probably proofread and complete it, then remove this comment. -->
42
 
43
  # bert-finetuned-ner
44
 
45
- This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.0608
48
- - Precision: 0.9384
49
- - Recall: 0.9509
50
- - F1: 0.9446
51
- - Accuracy: 0.9864
52
 
53
  ## Model description
54
 
@@ -73,15 +73,13 @@ The following hyperparameters were used during training:
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
76
- - num_epochs: 3
77
 
78
  ### Training results
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | 0.076 | 1.0 | 1756 | 0.0633 | 0.9118 | 0.9357 | 0.9236 | 0.9827 |
83
- | 0.0354 | 2.0 | 3512 | 0.0631 | 0.9360 | 0.9505 | 0.9432 | 0.9864 |
84
- | 0.0211 | 3.0 | 5268 | 0.0608 | 0.9384 | 0.9509 | 0.9446 | 0.9864 |
85
 
86
 
87
  ### Framework versions
 
1
  ---
2
  license: apache-2.0
3
+ base_model: MarcosAutuori/bert-finetuned-ner
4
  tags:
5
  - generated_from_trainer
6
  datasets:
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.9379036264282166
29
  - name: Recall
30
  type: recall
31
+ value: 0.9532144059239314
32
  - name: F1
33
  type: f1
34
+ value: 0.9454970369752107
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9869900512156354
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
42
 
43
  # bert-finetuned-ner
44
 
45
+ This model is a fine-tuned version of [MarcosAutuori/bert-finetuned-ner](https://huggingface.co/MarcosAutuori/bert-finetuned-ner) on the conll2003 dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.0639
48
+ - Precision: 0.9379
49
+ - Recall: 0.9532
50
+ - F1: 0.9455
51
+ - Accuracy: 0.9870
52
 
53
  ## Model description
54
 
 
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
76
+ - num_epochs: 1
77
 
78
  ### Training results
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.0123 | 1.0 | 1756 | 0.0639 | 0.9379 | 0.9532 | 0.9455 | 0.9870 |
 
 
83
 
84
 
85
  ### Framework versions