My first Hugging Face commit!
Browse files- README.md +37 -0
- config.json +1 -0
- falling_rock.zip +3 -0
- falling_rock/_stable_baselines3_version +1 -0
- falling_rock/data +95 -0
- falling_rock/policy.optimizer.pth +3 -0
- falling_rock/policy.pth +3 -0
- falling_rock/pytorch_variables.pth +3 -0
- falling_rock/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 292.46 +/- 19.75
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff31f73da60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff31f73daf0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff31f73db80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff31f73dc10>", "_build": "<function ActorCriticPolicy._build at 0x7ff31f73dca0>", "forward": "<function ActorCriticPolicy.forward at 0x7ff31f73dd30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff31f73ddc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff31f73de50>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff31f73dee0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff31f73df70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff31f741040>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff31f7410d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff31f73e180>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 4014080, "_total_timesteps": 4000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675522800848748379, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI3JvL1IYds3hwyAug4FgbUBYPw7hOiaOQAAAAAAAAAAjWiWvXTb1T2ApXY+xo60vv5MYT2jUwU+AAAAAAAAAACaXxK8pIk5u51kFL66Ews8MwS5PCDN+LwAAIA/AACAP1rMmD7EcZA/I7jPPsd8O78H9us+lqACPgAAAAAAAAAAppPcPe4qTD8en4I9IINLv2TTMj4r5BE9AAAAAAAAAADNHFK7Cjy8P+v23bxgLJk+EE17vOYV4b0AAAAAAAAAAE2Ej71PT2M/cCEHvlY7LL+reTW+6ydbvQAAAAAAAAAAmijZvFwTZbq6DHK0NbRLrzoUIboleaMzAACAPwAAgD/NVkm+NXzXPmKFjD1gFBK/GCGWvsS4Cz4AAAAAAAAAAJo8VL2Pnla6W1kwNCWTli7sg2a6K2CnswAAgD8AAIA/QE7rPcrJgT+eVyU+MTdWv55RGD4lVgw+AAAAAAAAAADNMOm7ny2Vu8uENbwljIs8KEoAPe4Lbr0AAIA/AACAPzO9RrxUwoO8liQ3PsBOdD3Wc529rizdPAAAgD8AAIA/ANvxvCd5lT5Yozc9cIEMv+vroLyRBwU9AAAAAAAAAACt64s+U2KePkUxf74Lthu/rFnWPirZVb4AAAAAAAAAAOYdA75ybEQ+McerPkdFxL44gFw8gmUqPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZTiez4CHcECUhpRSlIwBbJRLvYwBdJRHQLQY8Yj0L+h1fZQoaAZoCWgPQwjkvtU6sWFwQJSGlFKUaBVLt2gWR0C0GRKp97WvdX2UKGgGaAloD0MIqG4u/rZdTkCUhpRSlGgVS4hoFkdAtBk8H7gsLHV9lChoBmgJaA9DCKyPh767eHBAlIaUUpRoFUvCaBZHQLQZOTfzjFR1fZQoaAZoCWgPQwhFK/cCs19zQJSGlFKUaBVL5mgWR0C0GT/W1+iKdX2UKGgGaAloD0MI3QcgtcnHcECUhpRSlGgVS6loFkdAtBlNf8dgfHV9lChoBmgJaA9DCHeGqS21YXRAlIaUUpRoFUvXaBZHQLQZTH7P6bh1fZQoaAZoCWgPQwgxthDkICRyQJSGlFKUaBVLymgWR0C0GYOMVDa5dX2UKGgGaAloD0MIYfw07s0bckCUhpRSlGgVS8toFkdAtBmBEgGKRHV9lChoBmgJaA9DCBgIAmRo+nJAlIaUUpRoFUvOaBZHQLQZjh99c8l1fZQoaAZoCWgPQwjbh7zlqrtxQJSGlFKUaBVLxWgWR0C0GYz544ZNdX2UKGgGaAloD0MIHuIftnR4c0CUhpRSlGgVS89oFkdAtBmmm51/2HV9lChoBmgJaA9DCIicvp4vanJAlIaUUpRoFUu6aBZHQLQZp+JxecB1fZQoaAZoCWgPQwiA0lCjUHVyQJSGlFKUaBVLuGgWR0C0GarBGhEjdX2UKGgGaAloD0MIpUxqaANYc0CUhpRSlGgVS9RoFkdAtBnCeiBXjnV9lChoBmgJaA9DCBOe0OtPyHNAlIaUUpRoFUu/aBZHQLQZ4dLxqfx1fZQoaAZoCWgPQwii7Zi669dxQJSGlFKUaBVLq2gWR0C0GeklzEJjdX2UKGgGaAloD0MISQ9Dq5OGcUCUhpRSlGgVS6RoFkdAtBoKcy31BnV9lChoBmgJaA9DCH7ja8/sbXRAlIaUUpRoFU0FAWgWR0C0Ghd43WFwdX2UKGgGaAloD0MISb4SSAnbcECUhpRSlGgVS7JoFkdAtBoYyeqaPXV9lChoBmgJaA9DCN1hE5n5HnJAlIaUUpRoFUu9aBZHQLQew1/2Cd11fZQoaAZoCWgPQwivCWmNQclxQJSGlFKUaBVLvmgWR0C0HtFbiZOSdX2UKGgGaAloD0MI/kRlwxohckCUhpRSlGgVS8NoFkdAtB7WEZiuuHV9lChoBmgJaA9DCGvwvipX8HJAlIaUUpRoFUu5aBZHQLQfCBVuJk51fZQoaAZoCWgPQwgJiEm4kD9zQJSGlFKUaBVLzWgWR0C0HxrylN1ydX2UKGgGaAloD0MIrG9gcmMBc0CUhpRSlGgVS8BoFkdAtB8wLa24NXV9lChoBmgJaA9DCL2KjA4IBnBAlIaUUpRoFUupaBZHQLQfMUR3/xV1fZQoaAZoCWgPQwgNwXEZN/9yQJSGlFKUaBVL22gWR0C0HzfJiiItdX2UKGgGaAloD0MIhCugUM+ac0CUhpRSlGgVS+toFkdAtB9AzfrKNnV9lChoBmgJaA9DCMk6HF0lKnNAlIaUUpRoFUvNaBZHQLQfQ3Lmp2l1fZQoaAZoCWgPQwg9C0J5nyFyQJSGlFKUaBVL0WgWR0C0H0q5byH3dX2UKGgGaAloD0MIhxVu+QjzckCUhpRSlGgVS6ZoFkdAtB9V3ljmS3V9lChoBmgJaA9DCPWFkPP+mHJAlIaUUpRoFUvAaBZHQLQfeU3n6mB1fZQoaAZoCWgPQwiunSgJSTJwQJSGlFKUaBVLsGgWR0C0H6j3IuGsdX2UKGgGaAloD0MIQQsJGJ0qckCUhpRSlGgVS89oFkdAtB/Lh5xBFHV9lChoBmgJaA9DCJT3cTRH0G9AlIaUUpRoFUutaBZHQLQf1bO/tY11fZQoaAZoCWgPQwjGppVCoN5xQJSGlFKUaBVLzGgWR0C0H9jfzjFRdX2UKGgGaAloD0MIIvq19dNjckCUhpRSlGgVS8ZoFkdAtB/rjzZpSXV9lChoBmgJaA9DCADJdOi0XnNAlIaUUpRoFUvHaBZHQLQgCj8UEgZ1fZQoaAZoCWgPQwjQDOIDe/txQJSGlFKUaBVLpGgWR0C0IClLeyiVdX2UKGgGaAloD0MINUWA03vhckCUhpRSlGgVS61oFkdAtCBcYbbUPXV9lChoBmgJaA9DCHTOT3Gc13NAlIaUUpRoFUvMaBZHQLQgYVpblil1fZQoaAZoCWgPQwh4COOn8S1yQJSGlFKUaBVLtWgWR0C0IGjhLoOhdX2UKGgGaAloD0MITRB1HwD4ckCUhpRSlGgVS7doFkdAtCB3Uc4o7XV9lChoBmgJaA9DCJzfMNHgVXBAlIaUUpRoFUu0aBZHQLQgfs90Rvp1fZQoaAZoCWgPQwjnGmZoPJxyQJSGlFKUaBVLzWgWR0C0IK8LronsdX2UKGgGaAloD0MIWtb9Y+Ffc0CUhpRSlGgVS91oFkdAtCDWuHN5dHV9lChoBmgJaA9DCCWUvhCyVnJAlIaUUpRoFUvVaBZHQLQg2fUWl/J1fZQoaAZoCWgPQwhAv+/f/PFyQJSGlFKUaBVL22gWR0C0IQX3L3bmdX2UKGgGaAloD0MIjV4NUFqAcUCUhpRSlGgVS8ZoFkdAtCEQs/Y8MnV9lChoBmgJaA9DCHqJsUy/VXBAlIaUUpRoFUu6aBZHQLQhHBJI1+B1fZQoaAZoCWgPQwiOyk3UEpNxQJSGlFKUaBVLt2gWR0C0ISD8UEgXdX2UKGgGaAloD0MISP5g4LmScUCUhpRSlGgVS69oFkdAtCEpGPPszHV9lChoBmgJaA9DCGyzsRIzCXNAlIaUUpRoFUvHaBZHQLQhPjm0VrR1fZQoaAZoCWgPQwiy2vy/akdzQJSGlFKUaBVL1GgWR0C0IYpdnkDIdX2UKGgGaAloD0MIm+Wy0bm6cUCUhpRSlGgVS7ZoFkdAtCGhnRLK3nV9lChoBmgJaA9DCEfGavP/kXJAlIaUUpRoFUu2aBZHQLQhvmCyyD91fZQoaAZoCWgPQwgs76oHjOBzQJSGlFKUaBVL0WgWR0C0Id2orFwUdX2UKGgGaAloD0MIn1p9dRVPc0CUhpRSlGgVS9RoFkdAtCHsPlMh5nV9lChoBmgJaA9DCGdhTzt86HJAlIaUUpRoFUu5aBZHQLQiCF1SwW51fZQoaAZoCWgPQwgBp3fxfolzQJSGlFKUaBVL2mgWR0C0IhR0ZFXrdX2UKGgGaAloD0MINe7Nb9gyc0CUhpRSlGgVS65oFkdAtCIfT4L1EnV9lChoBmgJaA9DCOSFdHhIQ3FAlIaUUpRoFUvIaBZHQLQiWTNdJJ51fZQoaAZoCWgPQwiEglK08hhxQJSGlFKUaBVLu2gWR0C0IoPiHZbqdX2UKGgGaAloD0MIsMbZdITHcECUhpRSlGgVS8NoFkdAtCKjhsImgXV9lChoBmgJaA9DCG2tLxLam3JAlIaUUpRoFUvCaBZHQLQiqIXj2jB1fZQoaAZoCWgPQwhLdmwE4jlxQJSGlFKUaBVLyGgWR0C0Ir9b1RLsdX2UKGgGaAloD0MIg9vawnOJcECUhpRSlGgVS51oFkdAtCLZGZuyeXV9lChoBmgJaA9DCDlegegJ2HNAlIaUUpRoFUv1aBZHQLQi9KQ7tAt1fZQoaAZoCWgPQwi9++O9ahlzQJSGlFKUaBVL1WgWR0C0Ivb4zrNXdX2UKGgGaAloD0MIxcpo5LMuckCUhpRSlGgVS6toFkdAtCMPi3ocJnV9lChoBmgJaA9DCO888ZxtcHFAlIaUUpRoFUvKaBZHQLQjdLsa86F1fZQoaAZoCWgPQwiu8gTCTnByQJSGlFKUaBVLpWgWR0C0I3upbUw0dX2UKGgGaAloD0MIRu1+FaCAc0CUhpRSlGgVS8VoFkdAtCOKW+oLonV9lChoBmgJaA9DCCic3VrmaHRAlIaUUpRoFUvPaBZHQLQjroNd7fJ1fZQoaAZoCWgPQwj1ZtR8FQpzQJSGlFKUaBVL1mgWR0C0I9tcnmaIdX2UKGgGaAloD0MIr0Sg+sfUc0CUhpRSlGgVS9BoFkdAtCPlqwhW53V9lChoBmgJaA9DCOKPos6cZnBAlIaUUpRoFUukaBZHQLQkB/NZ/1B1fZQoaAZoCWgPQwh6q65D9Z50QJSGlFKUaBVL4GgWR0C0JEOLR8c/dX2UKGgGaAloD0MIB5eOOY9uc0CUhpRSlGgVS81oFkdAtCRDBCUornV9lChoBmgJaA9DCKcIcHrXgHFAlIaUUpRoFUvHaBZHQLQkWANG3F11fZQoaAZoCWgPQwiYMQVrnNZxQJSGlFKUaBVLv2gWR0C0JF2LUCq7dX2UKGgGaAloD0MILAyR0xfscECUhpRSlGgVS6hoFkdAtCRhoQFs6HV9lChoBmgJaA9DCDYhrTHogXJAlIaUUpRoFUu7aBZHQLQkbVdonKJ1fZQoaAZoCWgPQwhWndUCO6NwQJSGlFKUaBVLuGgWR0C0JJwXhwVCdX2UKGgGaAloD0MIsMVun1Vpc0CUhpRSlGgVS81oFkdAtCSrwazeGnV9lChoBmgJaA9DCFJEhlX8UXFAlIaUUpRoFUusaBZHQLQk1tr9ETh1fZQoaAZoCWgPQwi+TurLUn5yQJSGlFKUaBVLvWgWR0C0JOOfVZs9dX2UKGgGaAloD0MIk1M7w5REc0CUhpRSlGgVS8poFkdAtCTwqy4WlHV9lChoBmgJaA9DCFZHjnSGvXNAlIaUUpRoFUu2aBZHQLQk+u4wyqN1fZQoaAZoCWgPQwhZMPFHkeRxQJSGlFKUaBVLumgWR0C0JTeFg2IgdX2UKGgGaAloD0MIdH0fDlJkckCUhpRSlGgVS81oFkdAtCUzFMqSYHV9lChoBmgJaA9DCNEhcCQQinJAlIaUUpRoFUu2aBZHQLQlV+IMz/J1fZQoaAZoCWgPQwgZV1wcVVdzQJSGlFKUaBVL6mgWR0C0JWUXYUWVdX2UKGgGaAloD0MIf6Zetwj3ckCUhpRSlGgVS75oFkdAtCVkx8D0UXV9lChoBmgJaA9DCKHZdW/FU3BAlIaUUpRoFUvDaBZHQLQlfiJO32F1fZQoaAZoCWgPQwibdFsiVy5xQJSGlFKUaBVLwmgWR0C0JX9+ocaPdX2UKGgGaAloD0MIqWqCqLufc0CUhpRSlGgVS7xoFkdAtCV+b/ffoHV9lChoBmgJaA9DCLeb4JtmWnNAlIaUUpRoFUvZaBZHQLQll0uUUwl1fZQoaAZoCWgPQwh48X7c/mdxQJSGlFKUaBVLzGgWR0C0Jb/YWcjJdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1472, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
falling_rock.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f562856d9e3a9bb0312215181a5c8f749eeacc90cf549234bb503946957446a
|
3 |
+
size 147294
|
falling_rock/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
falling_rock/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff31f73da60>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff31f73daf0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff31f73db80>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff31f73dc10>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff31f73dca0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff31f73dd30>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff31f73ddc0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff31f73de50>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff31f73dee0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff31f73df70>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff31f741040>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff31f7410d0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7ff31f73e180>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 4014080,
|
47 |
+
"_total_timesteps": 4000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1675522800848748379,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI3JvL1IYds3hwyAug4FgbUBYPw7hOiaOQAAAAAAAAAAjWiWvXTb1T2ApXY+xo60vv5MYT2jUwU+AAAAAAAAAACaXxK8pIk5u51kFL66Ews8MwS5PCDN+LwAAIA/AACAP1rMmD7EcZA/I7jPPsd8O78H9us+lqACPgAAAAAAAAAAppPcPe4qTD8en4I9IINLv2TTMj4r5BE9AAAAAAAAAADNHFK7Cjy8P+v23bxgLJk+EE17vOYV4b0AAAAAAAAAAE2Ej71PT2M/cCEHvlY7LL+reTW+6ydbvQAAAAAAAAAAmijZvFwTZbq6DHK0NbRLrzoUIboleaMzAACAPwAAgD/NVkm+NXzXPmKFjD1gFBK/GCGWvsS4Cz4AAAAAAAAAAJo8VL2Pnla6W1kwNCWTli7sg2a6K2CnswAAgD8AAIA/QE7rPcrJgT+eVyU+MTdWv55RGD4lVgw+AAAAAAAAAADNMOm7ny2Vu8uENbwljIs8KEoAPe4Lbr0AAIA/AACAPzO9RrxUwoO8liQ3PsBOdD3Wc529rizdPAAAgD8AAIA/ANvxvCd5lT5Yozc9cIEMv+vroLyRBwU9AAAAAAAAAACt64s+U2KePkUxf74Lthu/rFnWPirZVb4AAAAAAAAAAOYdA75ybEQ+McerPkdFxL44gFw8gmUqPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.0035199999999999676,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZTiez4CHcECUhpRSlIwBbJRLvYwBdJRHQLQY8Yj0L+h1fZQoaAZoCWgPQwjkvtU6sWFwQJSGlFKUaBVLt2gWR0C0GRKp97WvdX2UKGgGaAloD0MIqG4u/rZdTkCUhpRSlGgVS4hoFkdAtBk8H7gsLHV9lChoBmgJaA9DCKyPh767eHBAlIaUUpRoFUvCaBZHQLQZOTfzjFR1fZQoaAZoCWgPQwhFK/cCs19zQJSGlFKUaBVL5mgWR0C0GT/W1+iKdX2UKGgGaAloD0MI3QcgtcnHcECUhpRSlGgVS6loFkdAtBlNf8dgfHV9lChoBmgJaA9DCHeGqS21YXRAlIaUUpRoFUvXaBZHQLQZTH7P6bh1fZQoaAZoCWgPQwgxthDkICRyQJSGlFKUaBVLymgWR0C0GYOMVDa5dX2UKGgGaAloD0MIYfw07s0bckCUhpRSlGgVS8toFkdAtBmBEgGKRHV9lChoBmgJaA9DCBgIAmRo+nJAlIaUUpRoFUvOaBZHQLQZjh99c8l1fZQoaAZoCWgPQwjbh7zlqrtxQJSGlFKUaBVLxWgWR0C0GYz544ZNdX2UKGgGaAloD0MIHuIftnR4c0CUhpRSlGgVS89oFkdAtBmmm51/2HV9lChoBmgJaA9DCIicvp4vanJAlIaUUpRoFUu6aBZHQLQZp+JxecB1fZQoaAZoCWgPQwiA0lCjUHVyQJSGlFKUaBVLuGgWR0C0GarBGhEjdX2UKGgGaAloD0MIpUxqaANYc0CUhpRSlGgVS9RoFkdAtBnCeiBXjnV9lChoBmgJaA9DCBOe0OtPyHNAlIaUUpRoFUu/aBZHQLQZ4dLxqfx1fZQoaAZoCWgPQwii7Zi669dxQJSGlFKUaBVLq2gWR0C0GeklzEJjdX2UKGgGaAloD0MISQ9Dq5OGcUCUhpRSlGgVS6RoFkdAtBoKcy31BnV9lChoBmgJaA9DCH7ja8/sbXRAlIaUUpRoFU0FAWgWR0C0Ghd43WFwdX2UKGgGaAloD0MISb4SSAnbcECUhpRSlGgVS7JoFkdAtBoYyeqaPXV9lChoBmgJaA9DCN1hE5n5HnJAlIaUUpRoFUu9aBZHQLQew1/2Cd11fZQoaAZoCWgPQwivCWmNQclxQJSGlFKUaBVLvmgWR0C0HtFbiZOSdX2UKGgGaAloD0MI/kRlwxohckCUhpRSlGgVS8NoFkdAtB7WEZiuuHV9lChoBmgJaA9DCGvwvipX8HJAlIaUUpRoFUu5aBZHQLQfCBVuJk51fZQoaAZoCWgPQwgJiEm4kD9zQJSGlFKUaBVLzWgWR0C0HxrylN1ydX2UKGgGaAloD0MIrG9gcmMBc0CUhpRSlGgVS8BoFkdAtB8wLa24NXV9lChoBmgJaA9DCL2KjA4IBnBAlIaUUpRoFUupaBZHQLQfMUR3/xV1fZQoaAZoCWgPQwgNwXEZN/9yQJSGlFKUaBVL22gWR0C0HzfJiiItdX2UKGgGaAloD0MIhCugUM+ac0CUhpRSlGgVS+toFkdAtB9AzfrKNnV9lChoBmgJaA9DCMk6HF0lKnNAlIaUUpRoFUvNaBZHQLQfQ3Lmp2l1fZQoaAZoCWgPQwg9C0J5nyFyQJSGlFKUaBVL0WgWR0C0H0q5byH3dX2UKGgGaAloD0MIhxVu+QjzckCUhpRSlGgVS6ZoFkdAtB9V3ljmS3V9lChoBmgJaA9DCPWFkPP+mHJAlIaUUpRoFUvAaBZHQLQfeU3n6mB1fZQoaAZoCWgPQwiunSgJSTJwQJSGlFKUaBVLsGgWR0C0H6j3IuGsdX2UKGgGaAloD0MIQQsJGJ0qckCUhpRSlGgVS89oFkdAtB/Lh5xBFHV9lChoBmgJaA9DCJT3cTRH0G9AlIaUUpRoFUutaBZHQLQf1bO/tY11fZQoaAZoCWgPQwjGppVCoN5xQJSGlFKUaBVLzGgWR0C0H9jfzjFRdX2UKGgGaAloD0MIIvq19dNjckCUhpRSlGgVS8ZoFkdAtB/rjzZpSXV9lChoBmgJaA9DCADJdOi0XnNAlIaUUpRoFUvHaBZHQLQgCj8UEgZ1fZQoaAZoCWgPQwjQDOIDe/txQJSGlFKUaBVLpGgWR0C0IClLeyiVdX2UKGgGaAloD0MINUWA03vhckCUhpRSlGgVS61oFkdAtCBcYbbUPXV9lChoBmgJaA9DCHTOT3Gc13NAlIaUUpRoFUvMaBZHQLQgYVpblil1fZQoaAZoCWgPQwh4COOn8S1yQJSGlFKUaBVLtWgWR0C0IGjhLoOhdX2UKGgGaAloD0MITRB1HwD4ckCUhpRSlGgVS7doFkdAtCB3Uc4o7XV9lChoBmgJaA9DCJzfMNHgVXBAlIaUUpRoFUu0aBZHQLQgfs90Rvp1fZQoaAZoCWgPQwjnGmZoPJxyQJSGlFKUaBVLzWgWR0C0IK8LronsdX2UKGgGaAloD0MIWtb9Y+Ffc0CUhpRSlGgVS91oFkdAtCDWuHN5dHV9lChoBmgJaA9DCCWUvhCyVnJAlIaUUpRoFUvVaBZHQLQg2fUWl/J1fZQoaAZoCWgPQwhAv+/f/PFyQJSGlFKUaBVL22gWR0C0IQX3L3bmdX2UKGgGaAloD0MIjV4NUFqAcUCUhpRSlGgVS8ZoFkdAtCEQs/Y8MnV9lChoBmgJaA9DCHqJsUy/VXBAlIaUUpRoFUu6aBZHQLQhHBJI1+B1fZQoaAZoCWgPQwiOyk3UEpNxQJSGlFKUaBVLt2gWR0C0ISD8UEgXdX2UKGgGaAloD0MISP5g4LmScUCUhpRSlGgVS69oFkdAtCEpGPPszHV9lChoBmgJaA9DCGyzsRIzCXNAlIaUUpRoFUvHaBZHQLQhPjm0VrR1fZQoaAZoCWgPQwiy2vy/akdzQJSGlFKUaBVL1GgWR0C0IYpdnkDIdX2UKGgGaAloD0MIm+Wy0bm6cUCUhpRSlGgVS7ZoFkdAtCGhnRLK3nV9lChoBmgJaA9DCEfGavP/kXJAlIaUUpRoFUu2aBZHQLQhvmCyyD91fZQoaAZoCWgPQwgs76oHjOBzQJSGlFKUaBVL0WgWR0C0Id2orFwUdX2UKGgGaAloD0MIn1p9dRVPc0CUhpRSlGgVS9RoFkdAtCHsPlMh5nV9lChoBmgJaA9DCGdhTzt86HJAlIaUUpRoFUu5aBZHQLQiCF1SwW51fZQoaAZoCWgPQwgBp3fxfolzQJSGlFKUaBVL2mgWR0C0IhR0ZFXrdX2UKGgGaAloD0MINe7Nb9gyc0CUhpRSlGgVS65oFkdAtCIfT4L1EnV9lChoBmgJaA9DCOSFdHhIQ3FAlIaUUpRoFUvIaBZHQLQiWTNdJJ51fZQoaAZoCWgPQwiEglK08hhxQJSGlFKUaBVLu2gWR0C0IoPiHZbqdX2UKGgGaAloD0MIsMbZdITHcECUhpRSlGgVS8NoFkdAtCKjhsImgXV9lChoBmgJaA9DCG2tLxLam3JAlIaUUpRoFUvCaBZHQLQiqIXj2jB1fZQoaAZoCWgPQwhLdmwE4jlxQJSGlFKUaBVLyGgWR0C0Ir9b1RLsdX2UKGgGaAloD0MIg9vawnOJcECUhpRSlGgVS51oFkdAtCLZGZuyeXV9lChoBmgJaA9DCDlegegJ2HNAlIaUUpRoFUv1aBZHQLQi9KQ7tAt1fZQoaAZoCWgPQwi9++O9ahlzQJSGlFKUaBVL1WgWR0C0Ivb4zrNXdX2UKGgGaAloD0MIxcpo5LMuckCUhpRSlGgVS6toFkdAtCMPi3ocJnV9lChoBmgJaA9DCO888ZxtcHFAlIaUUpRoFUvKaBZHQLQjdLsa86F1fZQoaAZoCWgPQwiu8gTCTnByQJSGlFKUaBVLpWgWR0C0I3upbUw0dX2UKGgGaAloD0MIRu1+FaCAc0CUhpRSlGgVS8VoFkdAtCOKW+oLonV9lChoBmgJaA9DCCic3VrmaHRAlIaUUpRoFUvPaBZHQLQjroNd7fJ1fZQoaAZoCWgPQwj1ZtR8FQpzQJSGlFKUaBVL1mgWR0C0I9tcnmaIdX2UKGgGaAloD0MIr0Sg+sfUc0CUhpRSlGgVS9BoFkdAtCPlqwhW53V9lChoBmgJaA9DCOKPos6cZnBAlIaUUpRoFUukaBZHQLQkB/NZ/1B1fZQoaAZoCWgPQwh6q65D9Z50QJSGlFKUaBVL4GgWR0C0JEOLR8c/dX2UKGgGaAloD0MIB5eOOY9uc0CUhpRSlGgVS81oFkdAtCRDBCUornV9lChoBmgJaA9DCKcIcHrXgHFAlIaUUpRoFUvHaBZHQLQkWANG3F11fZQoaAZoCWgPQwiYMQVrnNZxQJSGlFKUaBVLv2gWR0C0JF2LUCq7dX2UKGgGaAloD0MILAyR0xfscECUhpRSlGgVS6hoFkdAtCRhoQFs6HV9lChoBmgJaA9DCDYhrTHogXJAlIaUUpRoFUu7aBZHQLQkbVdonKJ1fZQoaAZoCWgPQwhWndUCO6NwQJSGlFKUaBVLuGgWR0C0JJwXhwVCdX2UKGgGaAloD0MIsMVun1Vpc0CUhpRSlGgVS81oFkdAtCSrwazeGnV9lChoBmgJaA9DCFJEhlX8UXFAlIaUUpRoFUusaBZHQLQk1tr9ETh1fZQoaAZoCWgPQwi+TurLUn5yQJSGlFKUaBVLvWgWR0C0JOOfVZs9dX2UKGgGaAloD0MIk1M7w5REc0CUhpRSlGgVS8poFkdAtCTwqy4WlHV9lChoBmgJaA9DCFZHjnSGvXNAlIaUUpRoFUu2aBZHQLQk+u4wyqN1fZQoaAZoCWgPQwhZMPFHkeRxQJSGlFKUaBVLumgWR0C0JTeFg2IgdX2UKGgGaAloD0MIdH0fDlJkckCUhpRSlGgVS81oFkdAtCUzFMqSYHV9lChoBmgJaA9DCNEhcCQQinJAlIaUUpRoFUu2aBZHQLQlV+IMz/J1fZQoaAZoCWgPQwgZV1wcVVdzQJSGlFKUaBVL6mgWR0C0JWUXYUWVdX2UKGgGaAloD0MIf6Zetwj3ckCUhpRSlGgVS75oFkdAtCVkx8D0UXV9lChoBmgJaA9DCKHZdW/FU3BAlIaUUpRoFUvDaBZHQLQlfiJO32F1fZQoaAZoCWgPQwibdFsiVy5xQJSGlFKUaBVLwmgWR0C0JX9+ocaPdX2UKGgGaAloD0MIqWqCqLufc0CUhpRSlGgVS7xoFkdAtCV+b/ffoHV9lChoBmgJaA9DCLeb4JtmWnNAlIaUUpRoFUvZaBZHQLQll0uUUwl1fZQoaAZoCWgPQwh48X7c/mdxQJSGlFKUaBVLzGgWR0C0Jb/YWcjJdWUu"
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 1472,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
falling_rock/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b7029c4dd753e2cd376e2526855452a0171d86ebd65e286d437a3f3c770ae210
|
3 |
+
size 87929
|
falling_rock/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7201dc86b0778567ac57174703c71c973aff63b1568d0b1b13563924b5211495
|
3 |
+
size 43393
|
falling_rock/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
falling_rock/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (188 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 292.4556701474675, "std_reward": 19.753469782482064, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-04T15:54:04.259358"}
|