Marcuswas commited on
Commit
d14ff41
·
verified ·
1 Parent(s): c18433e

Model save

Browse files
Files changed (1) hide show
  1. README.md +18 -27
README.md CHANGED
@@ -2,11 +2,7 @@
2
  license: apache-2.0
3
  base_model: bert-base-uncased
4
  tags:
5
- - 'biology '
6
- - NLP
7
- - text-classification
8
- - drugs
9
- - BERT
10
  metrics:
11
  - accuracy
12
  - precision
@@ -15,39 +11,34 @@ metrics:
15
  model-index:
16
  - name: bert-drug-review-to-condition
17
  results: []
18
- language:
19
- - en
20
- library_name: transformers
21
- datasets:
22
- - Zakia/drugscom_reviews
23
  ---
24
 
 
 
 
25
  # bert-drug-review-to-condition
26
 
27
  This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
28
  It achieves the following results on the evaluation set:
29
- - Loss: 0.4308
30
- - Accuracy: 0.9209
31
- - Precision: 0.9061
32
- - Recall: 0.9209
33
- - F1: 0.9106
34
 
35
  ## Model description
36
 
37
- Fine-tuning of Bert model with drug-related data for the purpose of text classification
38
 
39
  ## Intended uses & limitations
40
 
41
- Personal project.
42
 
43
  ## Training and evaluation data
44
 
45
- Kallumadi,Surya and Grer,Felix. (2018). Drug Reviews (Drugs.com). UCI Machine Learning Repository. https://doi.org/10.24432/C5SK5S.
46
 
47
  ## Training procedure
48
- Multiclass classification
49
- The model predicts the 'condition' feature from the 'review' feature, only the first 21 conditions are selected.
50
- The 'review' feature is lowercased, we select only values with at least 16 characters.
51
 
52
  ### Training hyperparameters
53
 
@@ -62,11 +53,11 @@ The following hyperparameters were used during training:
62
 
63
  ### Training results
64
 
65
- | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
66
- |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
67
- | No log | 1.0 | 113 | 1.1375 | 0.7747 | 0.7301 | 0.7747 | 0.7450 |
68
- | No log | 2.0 | 226 | 0.5595 | 0.8854 | 0.8675 | 0.8854 | 0.8728 |
69
- | No log | 3.0 | 339 | 0.4308 | 0.9209 | 0.9061 | 0.9209 | 0.9106 |
70
 
71
 
72
  ### Framework versions
@@ -74,4 +65,4 @@ The following hyperparameters were used during training:
74
  - Transformers 4.40.0
75
  - Pytorch 2.2.1+cu121
76
  - Datasets 2.19.0
77
- - Tokenizers 0.19.1
 
2
  license: apache-2.0
3
  base_model: bert-base-uncased
4
  tags:
5
+ - generated_from_trainer
 
 
 
 
6
  metrics:
7
  - accuracy
8
  - precision
 
11
  model-index:
12
  - name: bert-drug-review-to-condition
13
  results: []
 
 
 
 
 
14
  ---
15
 
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
  # bert-drug-review-to-condition
20
 
21
  This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 0.6678
24
+ - Accuracy: 0.8376
25
+ - Precision: 0.8325
26
+ - Recall: 0.8376
27
+ - F1: 0.8317
28
 
29
  ## Model description
30
 
31
+ More information needed
32
 
33
  ## Intended uses & limitations
34
 
35
+ More information needed
36
 
37
  ## Training and evaluation data
38
 
39
+ More information needed
40
 
41
  ## Training procedure
 
 
 
42
 
43
  ### Training hyperparameters
44
 
 
53
 
54
  ### Training results
55
 
56
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
57
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:|
58
+ | 0.8469 | 1.0 | 13390 | 0.8275 | 0.7673 | 0.7686 | 0.7673 | 0.7551 |
59
+ | 0.6319 | 2.0 | 26780 | 0.6895 | 0.8094 | 0.8090 | 0.8094 | 0.7978 |
60
+ | 0.4116 | 3.0 | 40170 | 0.6678 | 0.8376 | 0.8325 | 0.8376 | 0.8317 |
61
 
62
 
63
  ### Framework versions
 
65
  - Transformers 4.40.0
66
  - Pytorch 2.2.1+cu121
67
  - Datasets 2.19.0
68
+ - Tokenizers 0.19.1