--- license: apache-2.0 base_model: bert-base-uncased tags: - 'biology ' - NLP - text-classification - drugs - BERT metrics: - accuracy - precision - recall - f1 model-index: - name: bert-drug-review-to-condition results: [] language: - en library_name: transformers datasets: - Zakia/drugscom_reviews --- # bert-drug-review-to-condition This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4308 - Accuracy: 0.9209 - Precision: 0.9061 - Recall: 0.9209 - F1: 0.9106 ## Model description Fine-tuning of Bert model with drug-related data for the purpose of text classification ## Intended uses & limitations Personal project. ## Training and evaluation data Kallumadi,Surya and Grer,Felix. (2018). Drug Reviews (Drugs.com). UCI Machine Learning Repository. https://doi.org/10.24432/C5SK5S. ## Training procedure Multiclass classification The model predicts the 'condition' feature from the 'review' feature, only the first 21 conditions are selected. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 113 | 1.1375 | 0.7747 | 0.7301 | 0.7747 | 0.7450 | | No log | 2.0 | 226 | 0.5595 | 0.8854 | 0.8675 | 0.8854 | 0.8728 | | No log | 3.0 | 339 | 0.4308 | 0.9209 | 0.9061 | 0.9209 | 0.9106 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1