File size: 2,128 Bytes
070f5bf a2d1fc4 11f2a63 070f5bf 11f2a63 070f5bf 11f2a63 070f5bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
base_model: openai/whisper-medium
datasets:
- Marcusxx/CHUNGNAM_NN_FM_Addresses
language:
- en
license: apache-2.0
tags:
- hf-asr-leaderboard
- generated_from_trainer
model-index:
- name: CHUNGNAMADDRSSTranslate_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# CHUNGNAMADDRSSTranslate_model
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Marcusxx/CHUNGNAM_NN_FM_Addresses dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0166
- Cer: 13.1299
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 10000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer |
|:-------------:|:------:|:-----:|:---------------:|:-------:|
| 0.0835 | 0.7704 | 1000 | 0.0637 | 25.5441 |
| 0.0255 | 1.5408 | 2000 | 0.0417 | 1.1239 |
| 0.0073 | 2.3112 | 3000 | 0.0241 | 45.3216 |
| 0.0036 | 3.0817 | 4000 | 0.0196 | 0.5121 |
| 0.0006 | 3.8521 | 5000 | 0.0179 | 36.8526 |
| 0.0007 | 4.6225 | 6000 | 0.0187 | 3.9286 |
| 0.0004 | 5.3929 | 7000 | 0.0171 | 3.6235 |
| 0.0003 | 6.1633 | 8000 | 0.0170 | 4.4623 |
| 0.0005 | 6.9337 | 9000 | 0.0165 | 16.3369 |
| 0.0001 | 7.7042 | 10000 | 0.0166 | 13.1299 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.2.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|