File size: 2,128 Bytes
070f5bf
a2d1fc4
 
 
11f2a63
 
070f5bf
 
11f2a63
070f5bf
 
 
 
 
 
 
 
 
 
 
11f2a63
070f5bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
base_model: openai/whisper-medium
datasets:
- Marcusxx/CHUNGNAM_NN_FM_Addresses
language:
- en
license: apache-2.0
tags:
- hf-asr-leaderboard
- generated_from_trainer
model-index:
- name: CHUNGNAMADDRSSTranslate_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# CHUNGNAMADDRSSTranslate_model

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Marcusxx/CHUNGNAM_NN_FM_Addresses dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0166
- Cer: 13.1299

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 10000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Cer     |
|:-------------:|:------:|:-----:|:---------------:|:-------:|
| 0.0835        | 0.7704 | 1000  | 0.0637          | 25.5441 |
| 0.0255        | 1.5408 | 2000  | 0.0417          | 1.1239  |
| 0.0073        | 2.3112 | 3000  | 0.0241          | 45.3216 |
| 0.0036        | 3.0817 | 4000  | 0.0196          | 0.5121  |
| 0.0006        | 3.8521 | 5000  | 0.0179          | 36.8526 |
| 0.0007        | 4.6225 | 6000  | 0.0187          | 3.9286  |
| 0.0004        | 5.3929 | 7000  | 0.0171          | 3.6235  |
| 0.0003        | 6.1633 | 8000  | 0.0170          | 4.4623  |
| 0.0005        | 6.9337 | 9000  | 0.0165          | 16.3369 |
| 0.0001        | 7.7042 | 10000 | 0.0166          | 13.1299 |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.2.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1