File size: 2,072 Bytes
55e3022 363fb7d 55e3022 363fb7d 55e3022 822c5db 363fb7d 55e3022 363fb7d 55e3022 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
language:
- ko
license: apache-2.0
tags:
- hf-asr-leaderboard
- generated_from_trainer
base_model: openai/whisper-medium
datasets:
- Marcusxx/gwanju
model-index:
- name: gwanju_medium_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gwanju_medium_model
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Marcusxx/gwanju dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3568
- Cer: 47.6919
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 10000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer |
|:-------------:|:------:|:-----:|:---------------:|:-------:|
| 0.4521 | 0.2964 | 1000 | 0.4426 | 52.3770 |
| 0.404 | 0.5928 | 2000 | 0.4035 | 35.2990 |
| 0.3888 | 0.8892 | 3000 | 0.3768 | 26.0564 |
| 0.2392 | 1.1855 | 4000 | 0.3710 | 23.6799 |
| 0.2727 | 1.4819 | 5000 | 0.3638 | 36.0795 |
| 0.227 | 1.7783 | 6000 | 0.3565 | 27.6930 |
| 0.1401 | 2.0747 | 7000 | 0.3566 | 38.6322 |
| 0.124 | 2.3711 | 8000 | 0.3612 | 34.4801 |
| 0.1329 | 2.6675 | 9000 | 0.3592 | 47.7958 |
| 0.1204 | 2.9638 | 10000 | 0.3568 | 47.6919 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.2.2+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
|