File size: 4,759 Bytes
dd4e232 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: mit
tags:
- generated_from_trainer
datasets:
- funsd-layoutlmv3
model-index:
- name: my-lilt-en-funsd
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my-lilt-en-funsd
This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the funsd-layoutlmv3 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7942
- Answer: {'precision': 0.8597914252607184, 'recall': 0.9082007343941249, 'f1': 0.8833333333333333, 'number': 817}
- Header: {'precision': 0.6666666666666666, 'recall': 0.5714285714285714, 'f1': 0.6153846153846153, 'number': 119}
- Question: {'precision': 0.9046746104491292, 'recall': 0.9164345403899722, 'f1': 0.9105166051660516, 'number': 1077}
- Overall Precision: 0.8740
- Overall Recall: 0.8927
- Overall F1: 0.8833
- Overall Accuracy: 0.8042
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.1935 | 26.32 | 500 | 1.2125 | {'precision': 0.8702830188679245, 'recall': 0.9033047735618115, 'f1': 0.8864864864864864, 'number': 817} | {'precision': 0.6296296296296297, 'recall': 0.5714285714285714, 'f1': 0.5991189427312775, 'number': 119} | {'precision': 0.8748921484037964, 'recall': 0.9415041782729805, 'f1': 0.9069767441860466, 'number': 1077} | 0.8605 | 0.9041 | 0.8818 | 0.8024 |
| 0.0063 | 52.63 | 1000 | 1.4406 | {'precision': 0.8732394366197183, 'recall': 0.9106487148102815, 'f1': 0.8915518274415818, 'number': 817} | {'precision': 0.632183908045977, 'recall': 0.46218487394957986, 'f1': 0.5339805825242718, 'number': 119} | {'precision': 0.8827708703374778, 'recall': 0.9229340761374187, 'f1': 0.902405810258738, 'number': 1077} | 0.8683 | 0.8907 | 0.8794 | 0.8175 |
| 0.002 | 78.95 | 1500 | 1.6624 | {'precision': 0.861904761904762, 'recall': 0.8861689106487148, 'f1': 0.8738684369342186, 'number': 817} | {'precision': 0.6363636363636364, 'recall': 0.5294117647058824, 'f1': 0.5779816513761468, 'number': 119} | {'precision': 0.8920863309352518, 'recall': 0.9210770659238626, 'f1': 0.9063499314755596, 'number': 1077} | 0.8674 | 0.8838 | 0.8755 | 0.7998 |
| 0.0006 | 105.26 | 2000 | 1.7942 | {'precision': 0.8597914252607184, 'recall': 0.9082007343941249, 'f1': 0.8833333333333333, 'number': 817} | {'precision': 0.6666666666666666, 'recall': 0.5714285714285714, 'f1': 0.6153846153846153, 'number': 119} | {'precision': 0.9046746104491292, 'recall': 0.9164345403899722, 'f1': 0.9105166051660516, 'number': 1077} | 0.8740 | 0.8927 | 0.8833 | 0.8042 |
| 0.0002 | 131.58 | 2500 | 1.8161 | {'precision': 0.8591385331781141, 'recall': 0.9033047735618115, 'f1': 0.8806682577565632, 'number': 817} | {'precision': 0.6346153846153846, 'recall': 0.5546218487394958, 'f1': 0.5919282511210763, 'number': 119} | {'precision': 0.9047619047619048, 'recall': 0.9173630454967502, 'f1': 0.9110189027201475, 'number': 1077} | 0.8720 | 0.8902 | 0.8810 | 0.8021 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|