--- library_name: transformers language: - ar license: apache-2.0 base_model: openai/whisper-large-v2 tags: - generated_from_trainer datasets: - darija-c metrics: - bleu model-index: - name: Finetuned Whisper large-v2 for darija speech translation results: [] --- # Finetuned Whisper large-v2 for darija speech translation This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the Darija-C dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Bleu: 0.7440 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-------:|:----:|:---------------:|:------:| | 2.8484 | 0.8333 | 50 | 1.3002 | 0.0478 | | 1.3282 | 1.6667 | 100 | 0.6981 | 0.2207 | | 0.8624 | 2.5 | 150 | 0.3707 | 0.3989 | | 0.5125 | 3.3333 | 200 | 0.1671 | 0.5491 | | 0.2217 | 4.1667 | 250 | 0.1338 | 0.5698 | | 0.2398 | 5.0 | 300 | 0.0775 | 0.6498 | | 0.048 | 5.8333 | 350 | 0.0474 | 0.7083 | | 0.0894 | 6.6667 | 400 | 0.0116 | 0.7344 | | 0.0133 | 7.5 | 450 | 0.0009 | 0.7440 | | 0.0009 | 8.3333 | 500 | 0.0023 | 0.7286 | | 0.0029 | 9.1667 | 550 | 0.0002 | 0.7440 | | 0.0004 | 10.0 | 600 | 0.0001 | 0.7440 | | 0.0001 | 10.8333 | 650 | 0.0001 | 0.7440 | | 0.0001 | 11.6667 | 700 | 0.0001 | 0.7440 | | 0.0 | 12.5 | 750 | 0.0000 | 0.7440 | | 0.0001 | 13.3333 | 800 | 0.0000 | 0.7440 | | 0.0 | 14.1667 | 850 | 0.0000 | 0.7440 | | 0.0 | 15.0 | 900 | 0.0000 | 0.7440 | | 0.0 | 15.8333 | 950 | 0.0000 | 0.7440 | | 0.0 | 16.6667 | 1000 | 0.0000 | 0.7440 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 2.19.2 - Tokenizers 0.21.0