File size: 2,446 Bytes
5599c2c
 
 
 
2d43abc
 
5599c2c
 
 
23926f1
 
 
 
 
 
 
5599c2c
 
 
 
 
 
 
9a17c43
23926f1
 
1d6222a
7916cef
 
 
1d6222a
7916cef
5599c2c
 
 
 
 
 
 
2d43abc
 
5599c2c
2d43abc
5599c2c
 
2d43abc
5599c2c
 
2d43abc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa254ec
2d43abc
 
5599c2c
 
 
 
 
23926f1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
library_name: transformers
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: whisper-small-es-ja
  results: []
datasets:
- Marianoleiras/voxpopuli_es-ja
language:
- es
- ja
base_model:
- openai/whisper-small
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-small-es-ja

This model is a fine-tuned version of OpenAI's whisper-small on the Marianoleiras/voxpopuli_es-ja dataset, designed for Spanish-to-Japanese speech-to-text (STT) tasks.
It leverages OpenAI's Whisper architecture, which is well-suited for multilingual speech recognition and translation tasks.

The model achieves the following results on the evaluation set:
- Loss: 1.1724
- Bleu: 22.2850

And the following result on the test set:
- Bleu: 21.4557

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 3500
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Bleu    | Validation Loss |
|:-------------:|:------:|:----:|:-------:|:---------------:|
| 1.5787        | 0.3962 | 250  | 11.6756 | 1.5196          |
| 1.3535        | 0.7924 | 500  | 16.0514 | 1.3470          |
| 1.0658        | 1.1886 | 750  | 17.7743 | 1.2533          |
| 1.0303        | 1.5848 | 1000 | 19.1894 | 1.2046          |
| 0.9893        | 1.9810 | 1250 | 20.1198 | 1.1591          |
| 0.7569        | 2.3772 | 1500 | 21.0054 | 1.1546          |
| 0.7571        | 2.7734 | 1750 | 21.6425 | 1.1378          |
| 0.5557        | 3.1696 | 2000 | 21.7563 | 1.1500          |
| 0.5612        | 3.5658 | 2250 | 21.1391 | 1.1395          |
| 0.5581        | 3.9620 | 2500 | 22.0412 | 1.1343          |
| 0.4144        | 4.3582 | 2750 | 22.2850 | 1.1724          |
| 0.4114        | 4.7544 | 3000 | 22.1925 | 1.1681          |
| 0.3005        | 5.1506 | 3250 | 21.4948 | 1.1947          |
| 0.2945        | 5.5468 | 3500 | 22.1454 | 1.1921          |


### Framework versions

- Transformers 4.47.1
- Pytorch 2.4.0+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0