--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - bleu model-index: - name: whisper-small-es-ja results: [] --- # whisper-small-es-ja This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1884 - Bleu: 19.9880 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - training_steps: 1500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:------:|:----:|:---------------:|:-------:| | 1.4562 | 0.7911 | 250 | 1.4257 | 13.1050 | | 1.1315 | 1.5823 | 500 | 1.2744 | 16.8159 | | 0.9172 | 2.3734 | 750 | 1.2167 | 18.6278 | | 0.7598 | 3.1646 | 1000 | 1.1958 | 20.1775 | | 0.7627 | 3.9557 | 1250 | 1.1817 | 20.0966 | | 0.6803 | 4.7468 | 1500 | 1.1884 | 19.9880 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.4.0+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0