--- license: apache-2.0 language: - en - la base_model: - google/mt5-small --- Demonstration of fine-tuning of mt5-small for C17th English (and Latin) legal depositions. Uses mt5-small, which is trained on the mC4 common crawal dataset containing 101 languages, including some Latin. mt5-small is the smallest of five variants of mt5 (small; base; large; XL; XXL). Fine-tuned with text to text pairs of raw-HTR and hand-corrected Ground Truth from C17th English High Court of Admiralty depositions. A series of fine-tuned mt5-small models will be created with ascending version numbers. Training dataset = 80%; validation dataset = 20%. mt5Tokenizer. PyTorch datasets. T5ForConditionalGeneration model. CER/WER evaluation; Qualitative evaluation (e.g. capitalisation; HTR error correction). Train using Nvidia T4 small 15 GB $0.40/hour. MT5TOKENIZER Python from transformers import T5Tokenizer tokenizer = T5Tokenizer.from_pretrained("google/mt5-small") TOKENIZE DATA Python train_encodings = tokenizer(list(train_inputs), text_target=list(train_targets), truncation=True, padding=True) val_encodings = tokenizer(list(val_inputs), text_target=list(val_targets), truncation=True, padding=True) CREATE PYTORCH DATASETS Python import torch class HTRDataset(torch.utils.data.Dataset): def __init__(self, encodings): self.encodings = encodings def __getitem__(self, idx): return {key: torch.tensor(val[idx]) for key, val in self.encodings.items()} def __len__(self): return len(self.encodings.input_ids) train_dataset = HTRDataset(train_encodings) val_dataset = HTRDataset(val_encodings) FINE-TUNING WITH TRANSFORMERS Python from transformers import T5ForConditionalGeneration model = T5ForConditionalGeneration.from_pretrained("google/mt5-small") TRAINING ARGUMENTS: python training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=8, # Or 16 if your GPU has enough memory per_device_eval_batch_size=8, # Same as train batch size learning_rate=1e-4, num_train_epochs=3, # Or 5 evaluation_strategy="epoch", save_strategy="epoch", fp16=True, # If your GPU supports it, for faster training # ... other arguments ... ) EARLY STOPPING: python training_args = TrainingArguments( # ... other arguments ... evaluation_strategy="epoch", load_best_model_at_end=True, metric_for_best_model="eval_loss", early_stopping_patience=3 # Optional ) CREATE TRAINER AND FINE-TUNE Python from transformers import Trainer trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=val_dataset ) trainer.train() --- Fine-tuning data experiments will include: * Using 1000 lines of raw-HTR paired with 1000 lines of hand corrected Ground Truth * Using 2000 lines of raw-HTR paired with 1000 lines of hand corrected Ground Truth * Using 1000 and 2000 lines of synthetic raw-HTR paired with 1000 lines of handcorrected Ground Truth --- Hyper-parameter experients will include: * Adjusting batch size from 8 paired-lines to 16 paired-lines * Adjusting epochs from 3 to 5 epochs * Adjusting learning rate ** Start with a learning rate of 1e-4 (0.0001). This is a common starting point for fine-tuning transformer models. ** Experiment with slightly higher or lower values (e.g., 5e-4 or 5e-5) in later experiments * Adjusting earlystopping settings