Mario12355
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,7 +1,45 @@
|
|
1 |
---
|
|
|
|
|
2 |
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
|
|
5 |
# Swabian-German Translation Model (DPO-Enhanced)
|
6 |
|
7 |
This model fine-tunes LLAMA 3.1 8B for bidirectional translation between Standard German and Swabian dialect, enhanced through Direct Preference Optimization (DPO).
|
@@ -19,7 +57,124 @@ This model fine-tunes LLAMA 3.1 8B for bidirectional translation between Standar
|
|
19 |
|
20 |
## Usage
|
21 |
|
|
|
|
|
22 |
```python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
# Example translation from Swabian to Standard German
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- de
|
4 |
license: mit
|
5 |
+
library_name: transformers
|
6 |
+
pipeline_tag: text2text-generation
|
7 |
+
tags:
|
8 |
+
- llama
|
9 |
+
- translation
|
10 |
+
- german
|
11 |
+
- dialect
|
12 |
+
- swabian
|
13 |
+
- qlora
|
14 |
+
- dpo
|
15 |
+
datasets:
|
16 |
+
- custom
|
17 |
+
model-index:
|
18 |
+
- name: swabian-german-translator
|
19 |
+
results:
|
20 |
+
- task:
|
21 |
+
type: translation
|
22 |
+
name: German-Swabian Translation
|
23 |
+
metrics:
|
24 |
+
- type: accuracy
|
25 |
+
value: 0.8
|
26 |
+
name: Training Loss
|
27 |
+
- type: bleu
|
28 |
+
value: N/A
|
29 |
+
name: BLEU Score
|
30 |
+
metadata:
|
31 |
+
author: [Your Name]
|
32 |
+
framework: pytorch
|
33 |
+
fine_tuning_type:
|
34 |
+
- dpo
|
35 |
+
- qlora
|
36 |
+
base_model: llama-3.1-8b
|
37 |
+
training_data: Custom dataset based on Schwäbisch-Schwätza wordbook
|
38 |
+
training_processes:
|
39 |
+
- sft
|
40 |
+
- dpo
|
41 |
---
|
42 |
+
|
43 |
# Swabian-German Translation Model (DPO-Enhanced)
|
44 |
|
45 |
This model fine-tunes LLAMA 3.1 8B for bidirectional translation between Standard German and Swabian dialect, enhanced through Direct Preference Optimization (DPO).
|
|
|
57 |
|
58 |
## Usage
|
59 |
|
60 |
+
### Basic Translation
|
61 |
+
|
62 |
```python
|
63 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
64 |
+
import torch
|
65 |
+
|
66 |
+
# Load model and tokenizer
|
67 |
+
model_name = "your-username/swabian-translator-dpo"
|
68 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
69 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
70 |
+
|
71 |
# Example translation from Swabian to Standard German
|
72 |
+
def translate(text, direction="to_german"):
|
73 |
+
if direction == "to_german":
|
74 |
+
prompt = f"Übersetze ins Hochdeutsche: {text}"
|
75 |
+
else:
|
76 |
+
prompt = f"Übersetze ins Schwäbische: {text}"
|
77 |
+
|
78 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
79 |
+
outputs = model.generate(**inputs, max_length=100)
|
80 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
81 |
+
|
82 |
+
# Example usage
|
83 |
+
swabian_text = "Du hosch ja a blaus Mol am Arm!"
|
84 |
+
german_translation = translate(swabian_text, "to_german")
|
85 |
+
print(german_translation) # Expected: "Du hast ja einen Bluterguss am Arm!"
|
86 |
+
```
|
87 |
+
|
88 |
+
### Translation Examples
|
89 |
+
|
90 |
+
Swabian to German:
|
91 |
+
```
|
92 |
+
Input: "I han koi Zeit"
|
93 |
+
Output: "Ich habe keine Zeit"
|
94 |
+
|
95 |
+
Input: "Des goht et"
|
96 |
+
Output: "Das geht nicht"
|
97 |
+
|
98 |
+
Input: "Wo bisch du her komma?"
|
99 |
+
Output: "Woher kommst du?"
|
100 |
+
```
|
101 |
+
|
102 |
+
German to Swabian:
|
103 |
+
```
|
104 |
+
Input: "Ich verstehe das nicht"
|
105 |
+
Output: "I versteh des et"
|
106 |
+
|
107 |
+
Input: "Das schmeckt sehr gut"
|
108 |
+
Output: "Des schmeckt arg guat"
|
109 |
+
```
|
110 |
+
|
111 |
+
## Model Architecture & Training
|
112 |
+
|
113 |
+
### Training Process
|
114 |
+
1. **Initial Dataset Preparation**
|
115 |
+
- Base dataset: 12,000+ word pairs from Schwäbisch-Schwätza wordbook
|
116 |
+
- Context enhancement using LLM-generated sentences
|
117 |
+
- Manual verification and cleanup
|
118 |
+
|
119 |
+
2. **SFT (Supervised Fine-Tuning)**
|
120 |
+
- QLoRA implementation for efficient training
|
121 |
+
- 2 epochs on the complete dataset
|
122 |
+
- Loss convergence at ~0.8
|
123 |
+
|
124 |
+
3. **DPO (Direct Preference Optimization)**
|
125 |
+
- 300 carefully curated preference pairs
|
126 |
+
- 3 epochs of preference learning
|
127 |
+
- Focus on natural and accurate translations
|
128 |
+
|
129 |
+
### Technical Implementation
|
130 |
+
- Quantized training using QLoRA
|
131 |
+
- 4-bit precision for efficient resource usage
|
132 |
+
- Training framework: UnslothAI
|
133 |
+
- Single GPU training (~16GB VRAM required)
|
134 |
+
|
135 |
+
## Limitations and Considerations
|
136 |
+
|
137 |
+
1. **Dialect Variations**
|
138 |
+
- Swabian varies significantly by region
|
139 |
+
- Model focuses on common/standard Swabian expressions
|
140 |
+
- May not capture all local variations
|
141 |
+
|
142 |
+
2. **Translation Quality**
|
143 |
+
- Best performance on common phrases and expressions
|
144 |
+
- May struggle with very colloquial or context-dependent translations
|
145 |
+
- Not recommended for official or legal translations
|
146 |
+
|
147 |
+
3. **Technical Limitations**
|
148 |
+
- Input length limited to 512 tokens
|
149 |
+
- Generation speed affected by quantization
|
150 |
+
- Memory requirements: ~8GB RAM minimum
|
151 |
+
|
152 |
+
## Community and Contributions
|
153 |
+
|
154 |
+
We welcome community contributions to improve the model:
|
155 |
+
- Additional training data
|
156 |
+
- Regional variant documentation
|
157 |
+
- Bug reports and fixes
|
158 |
+
- Performance improvements
|
159 |
+
|
160 |
+
Please submit issues or pull requests through the Hugging Face repository.
|
161 |
+
|
162 |
+
## Citation and Attribution
|
163 |
+
|
164 |
+
```bibtex
|
165 |
+
@misc{swabian-german-translator,
|
166 |
+
author = {[Your Name]},
|
167 |
+
title = {Swabian-German Translation Model},
|
168 |
+
year = {2024},
|
169 |
+
publisher = {Hugging Face},
|
170 |
+
journal = {Hugging Face Model Hub}
|
171 |
+
}
|
172 |
+
```
|
173 |
+
|
174 |
+
## License
|
175 |
+
This project is licensed under the MIT License - see the LICENSE file for details.
|
176 |
+
|
177 |
+
## Acknowledgments
|
178 |
+
- Original dictionary data: [schwäbisch-schwätza.de](http://xn--schwbisch-schwtza-tqbk.de/)
|
179 |
+
- UnslothAI for the training framework
|
180 |
+
- LLAMA 3.1 8B base model
|