File size: 5,919 Bytes
a9870ee
0385ad7
 
 
 
 
 
a9870ee
 
0385ad7
158d815
03f15aa
0385ad7
03f15aa
0385ad7
 
 
 
 
 
 
 
 
 
 
69e6d59
0385ad7
 
 
 
 
69e6d59
0385ad7
 
 
 
 
69e6d59
 
 
0385ad7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99b6c20
0385ad7
 
 
 
 
 
 
 
 
 
 
99b6c20
0385ad7
 
 
 
 
 
 
 
 
 
 
99b6c20
0385ad7
 
 
 
 
 
 
 
 
 
 
99b6c20
0385ad7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
---
language:
- ko
datasets:
- kyujinpy/KOpen-platypus
library_name: transformers
pipeline_tag: text-generation
license: cc-by-nc-4.0
---

# **Poly-platypus-ko**  
**Polyglot-ko + KO-platypus2 = Poly-platypus-ko**  
![img](./poly-platypus.png)  
  
## Model Details

**Model Developers** Kyujin Han (kyujinpy)

**Input** Models input text only.

**Output** Models generate text only.

**Model Architecture** 
Poly-platypus-ko is an auto-regressive language model based on the LLaMA2 transformer architecture.  

**Base Model**  
[Polyglot-ko-12.8b](https://huggingface.co/EleutherAI/polyglot-ko-12.8b)  

**Fine-tuning method**  
Same as [KO-Platypus2](https://github.com/Marker-Inc-Korea/CoT-llama2).  

**Training Dataset**  
I use [KOpen-platypus dataset](https://huggingface.co/datasets/kyujinpy/KOpen-platypus).   
I use A100 GPU 40GB and COLAB, when trianing.  

# **Model Bechmark1**

## KO-LLM leaderboard
- Follow up as [Open KO-LLM LeaderBoard](https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard).  

| Model | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
| --- | --- | --- | --- | --- | --- |
| Poly-platypus-ko-12.8b(ours) | NaN | NaN | NaN | NaN | NaN | 
| [KoT-platypus2-7B](https://huggingface.co/kyujinpy/KoT-platypus2-7B) | 38.05 | 49.63 | 34.68 | 37.69 | 68.08 |
| [KO-platypus2-7B-EX](https://huggingface.co/kyujinpy/KO-Platypus2-7B-ex) | 39.08 | 50.86 | 34.60 | 37.94 | 64.55 |
| [42MARU/polyglot-ko-12.8b-instruct](https://huggingface.co/42MARU/polyglot-ko-12.8b-instruct) | 36.35 | 51.59 | 26.38 | 45.16 | 59.98 |
| 42MARU/llama-2-ko-7b-instruct-v2 | 39.51 | 51.67 | 32.54 | 38.30 | 57.39 | 
| [FINDA-FIT/llama-p](https://huggingface.co/FINDA-FIT/llama-p) | 39.59 | 50.74 | 33.85 | 38.09 | 55.87 |  
> Compare with Top 5 SOTA models. (update: 10/01)

---  
# **Model Benchmark2**

## LM Eval Harness - Korean (polyglot branch)
- Used EleutherAI's [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/polyglot)
  
> Question Answering (QA)
### COPA (F1)
| Model | 0-shot | 5-shot | 10-shot | 50-shot |
| --- | --- | --- | --- | --- |
| [Polyglot-ko-5.8b](https://huggingface.co/EleutherAI/polyglot-ko-5.8b) | 0.7745 | 0.7676 | 0.7775 | 0.7887 |
| [Polyglot-ko-12.8b](https://huggingface.co/EleutherAI/polyglot-ko-12.8b) | 0.7937 | 0.8108 | 0.8037 | 0.8369 |
| [Llama-2-Ko-7b 20B](https://huggingface.co/beomi/llama-2-ko-7b) | 0.7388 | 0.7626 | 0.7808 | 0.7979 |
| [Llama-2-Ko-7b 40B](https://huggingface.co/beomi/llama-2-ko-7b) | 0.7436 | 0.7927 | 0.8037 | 0.8259 | 
| [KO-platypus2-7B-EX](https://huggingface.co/kyujinpy/KO-Platypus2-7B-ex) | 0.7509 | 0.7899 | 0.8029 | 0.8290 |  
| [KoT-platypus2-7B](https://huggingface.co/kyujinpy/KoT-platypus2-7B) | 0.7517 | 0.7868 | 0.8009 | 0.8239 |   
| **Poly-platypus-ko-12.8b(ours)** | 0.7876 | 0.8099 | NaN | NaN |   
   
> Natural Language Inference (NLI; 자연어 추론 평가)
### HellaSwag (F1)
| Model | 0-shot | 5-shot | 10-shot | 50-shot |
| --- | --- | --- | --- | --- |
| [Polyglot-ko-5.8b](https://huggingface.co/EleutherAI/polyglot-ko-5.8b) | 0.5976 | 0.5998 | 0.5979 | 0.6208 |
| [Polyglot-ko-12.8b](https://huggingface.co/EleutherAI/polyglot-ko-12.8b) | 0.5954 | 0.6306 | 0.6098 | 0.6118 |
| [Llama-2-Ko-7b 20B](https://huggingface.co/beomi/llama-2-ko-7b) | 0.4518 | 0.4668 | 0.4726 | 0.4828 |
| [Llama-2-Ko-7b 40B](https://huggingface.co/beomi/llama-2-ko-7b) | 0.4562 | 0.4657 | 0.4698 | 0.4774 |
| [KO-platypus2-7B-EX](https://huggingface.co/kyujinpy/KO-Platypus2-7B-ex) | 0.4571 | 0.4461 | 0.4371 | 0.4525 |  
| [KoT-platypus2-7B](https://huggingface.co/kyujinpy/KoT-platypus2-7B) | 0.4432 | 0.4382 | 0.4550 | 0.4534 | 
| **Poly-platypus-ko-12.8b(ours)** | 0.4838 | 0.4858 | NaN | NaN |   
  
> Question Answering (QA)
### BoolQ (F1)
| Model | 0-shot | 5-shot | 10-shot | 50-shot |
| --- | --- | --- | --- | --- |
| [Polyglot-ko-5.8b](https://huggingface.co/EleutherAI/polyglot-ko-5.8b) | 0.4356 | 0.5698 | 0.5187 | 0.5236 |
| [Polyglot-ko-12.8b](https://huggingface.co/EleutherAI/polyglot-ko-12.8b) | 0.4818 | 0.6041 | 0.6289 | 0.6448 |
| [Llama-2-Ko-7b 20B](https://huggingface.co/beomi/llama-2-ko-7b) | 0.3607 | 0.6797 | 0.6801 | 0.6622 |
| [Llama-2-Ko-7b 40B](https://huggingface.co/beomi/llama-2-ko-7b) | 0.5786 | 0.6977 | 0.7084 | 0.7144 |
| [KO-platypus2-7B-EX](https://huggingface.co/kyujinpy/KO-Platypus2-7B-ex) | 0.6028 | 0.6979 | 0.7016 | 0.6988 |  
| [KoT-platypus2-7B](https://huggingface.co/kyujinpy/KoT-platypus2-7B) | 0.6142 | 0.6757 | 0.6839 | 0.6878 | 
| **Poly-platypus-ko-12.8b(ours)** | 0.4888 | 0.6520 | NaN | NaN |   

> Classification
### SentiNeg (F1)
| Model | 0-shot | 5-shot | 10-shot | 50-shot |
| --- | --- | --- | --- | --- |
| [Polyglot-ko-5.8b](https://huggingface.co/EleutherAI/polyglot-ko-5.8b) | 0.3394 | 0.8841 | 0.8808 | 0.9521 |
| [Polyglot-ko-12.8b](https://huggingface.co/EleutherAI/polyglot-ko-12.8b) | 0.9117 | 0.9015 | 0.9345 | 0.9723 |
| [Llama-2-Ko-7b 20B](https://huggingface.co/beomi/llama-2-ko-7b) | 0.4855 | 0.8295 | 0.8711 | 0.8513 |
| [Llama-2-Ko-7b 40B](https://huggingface.co/beomi/llama-2-ko-7b) | 0.4594 | 0.7611 | 0.7276 | 0.9370 |
| [KO-platypus2-7B-EX](https://huggingface.co/kyujinpy/KO-Platypus2-7B-ex) | 0.5821 | 0.7653 | 0.7991 | 0.8643 |  
| [KoT-platypus2-7B](https://huggingface.co/kyujinpy/KoT-platypus2-7B) | 0.6127 | 0.7199 | 0.7531 | 0.8381 | 
| **Poly-platypus-ko-12.8b(ours)** | 0.8490 | 0.9597 | NaN | NaN |   
  
# Implementation Code
```python
### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

repo = "MarkrAI/kyujin-Poly-platypus-ko-12.8b"
CoT-llama = AutoModelForCausalLM.from_pretrained(
        repo,
        return_dict=True,
        torch_dtype=torch.float16,
        device_map='auto'
)
CoT-llama_tokenizer = AutoTokenizer.from_pretrained(repo)
```

> Readme format: [kyujinpy/KoT-platypus2-7B](https://huggingface.co/kyujinpy/KoT-platypus2-7B)

---