File size: 6,339 Bytes
a9870ee
0385ad7
 
 
 
 
 
f2a77d0
a9870ee
ea81010
 
0385ad7
158d815
cc48d72
 
 
0385ad7
 
 
0367065
0385ad7
0367065
0385ad7
0367065
 
73c4868
0367065
 
 
 
 
69e6d59
0385ad7
0367065
0385ad7
 
0367065
69e6d59
0385ad7
 
0367065
4a1b062
0385ad7
 
69e6d59
 
612d93a
 
d5c3e63
 
612d93a
d5c3e63
 
 
0367065
 
0385ad7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a1b062
0385ad7
 
 
 
 
 
 
 
 
 
 
4a1b062
0385ad7
 
 
 
 
 
 
 
 
 
 
4a1b062
0385ad7
 
 
 
 
 
 
 
 
 
 
4a1b062
0385ad7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
---
language:
- ko
datasets:
- kyujinpy/KOpen-platypus
library_name: transformers
pipeline_tag: text-generation
license: cc-by-nc-sa-4.0
---
**(주)미디어그룹사람과숲과 (주)마커의 LLM 연구 컨소시엄에서 개발된 모델입니다**  
**The license is `cc-by-nc-sa-4.0`.**  

# **Poly-platypus-ko**  
![img](./poly-platypus.png)   
**Polyglot-ko + KO-platypus2 = Poly-platypus-ko**   

## Model Details

**Model Developers** Kyujin Han (kyujinpy)
  
**Input** Models input text only.
  
**Output** Models generate text only.
  
**Model Architecture**  
Poly-platypus-ko is an auto-regressive language model based on the polyglot-ko transformer architecture.  
  
**Repo Link**  
Github KO-platypus2: [KO-platypus2](https://github.com/Marker-Inc-Korea/KO-Platypus)  
Github Poly-platypus-ko: [Poly-platypus-ko](https://github.com/KyujinHan/Poly-platypus-ko)  
  
**Base Model**  
[Polyglot-ko-12.8b](https://huggingface.co/EleutherAI/polyglot-ko-12.8b)  
  
**Fine-tuning method**  
Same as [KO-Platypus2](https://github.com/Marker-Inc-Korea/CoT-llama2).  
  
**Training Dataset**  
I use [KOpen-platypus dataset](https://huggingface.co/datasets/kyujinpy/KOpen-platypus).   
I use A100 GPU 40GB and COLAB, when trianing.  
   
---
# **Model Bechmark1**

## KO-LLM leaderboard
- Follow up as [Open KO-LLM LeaderBoard](https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard).  
  
![img](./leaderboard.png)
| Model | Average |Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
| --- | --- | --- | --- | --- | --- | --- |
| Poly-platypus-ko-12.8b(ours) | 44.95 | 35.15 | 50.39 | 25.58 | 38.74 | 74.88 | 
| [KoT-platypus2-7B](https://huggingface.co/kyujinpy/KoT-platypus2-7B) | 45.62 | 38.05 | 49.63 | 34.68 | 37.69 | 68.08 |
| [KO-platypus2-7B-EX](https://huggingface.co/kyujinpy/KO-Platypus2-7B-ex) | 45.41 | 39.08 | 50.86 | 34.60 | 37.94 | 64.55 |
| [42MARU/polyglot-ko-12.8b-instruct](https://huggingface.co/42MARU/polyglot-ko-12.8b-instruct) | 43.89 | 36.35 | 51.59 | 26.38 | 45.16 | 59.98 |
| [FINDA-FIT/llama-p](https://huggingface.co/FINDA-FIT/llama-p) | 43.63 | 39.59 | 50.74 | 33.85 | 38.09 | 55.87 |   
> Compare with Top 4 SOTA models. (update: 10/01)

---  
# **Model Benchmark2**

## LM Eval Harness - Korean (polyglot branch)
- Used EleutherAI's [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/polyglot)
  
> Question Answering (QA)
### COPA (F1)
| Model | 0-shot | 5-shot | 10-shot | 50-shot |
| --- | --- | --- | --- | --- |
| [Polyglot-ko-5.8b](https://huggingface.co/EleutherAI/polyglot-ko-5.8b) | 0.7745 | 0.7676 | 0.7775 | 0.7887 |
| [Polyglot-ko-12.8b](https://huggingface.co/EleutherAI/polyglot-ko-12.8b) | 0.7937 | 0.8108 | 0.8037 | 0.8369 |
| [Llama-2-Ko-7b 20B](https://huggingface.co/beomi/llama-2-ko-7b) | 0.7388 | 0.7626 | 0.7808 | 0.7979 |
| [Llama-2-Ko-7b 40B](https://huggingface.co/beomi/llama-2-ko-7b) | 0.7436 | 0.7927 | 0.8037 | 0.8259 | 
| [KO-platypus2-7B-EX](https://huggingface.co/kyujinpy/KO-Platypus2-7B-ex) | 0.7509 | 0.7899 | 0.8029 | 0.8290 |  
| [KoT-platypus2-7B](https://huggingface.co/kyujinpy/KoT-platypus2-7B) | 0.7517 | 0.7868 | 0.8009 | 0.8239 |   
| **Poly-platypus-ko-12.8b(ours)** | 0.7876 | 0.8099 | 0.8008 | 0.8239 |   
   
> Natural Language Inference (NLI; 자연어 추론 평가)
### HellaSwag (F1)
| Model | 0-shot | 5-shot | 10-shot | 50-shot |
| --- | --- | --- | --- | --- |
| [Polyglot-ko-5.8b](https://huggingface.co/EleutherAI/polyglot-ko-5.8b) | 0.5976 | 0.5998 | 0.5979 | 0.6208 |
| [Polyglot-ko-12.8b](https://huggingface.co/EleutherAI/polyglot-ko-12.8b) | 0.5954 | 0.6306 | 0.6098 | 0.6118 |
| [Llama-2-Ko-7b 20B](https://huggingface.co/beomi/llama-2-ko-7b) | 0.4518 | 0.4668 | 0.4726 | 0.4828 |
| [Llama-2-Ko-7b 40B](https://huggingface.co/beomi/llama-2-ko-7b) | 0.4562 | 0.4657 | 0.4698 | 0.4774 |
| [KO-platypus2-7B-EX](https://huggingface.co/kyujinpy/KO-Platypus2-7B-ex) | 0.4571 | 0.4461 | 0.4371 | 0.4525 |  
| [KoT-platypus2-7B](https://huggingface.co/kyujinpy/KoT-platypus2-7B) | 0.4432 | 0.4382 | 0.4550 | 0.4534 | 
| **Poly-platypus-ko-12.8b(ours)** | 0.4838 | 0.4858 | 0.5005 | 0.5062 |   
  
> Question Answering (QA)
### BoolQ (F1)
| Model | 0-shot | 5-shot | 10-shot | 50-shot |
| --- | --- | --- | --- | --- |
| [Polyglot-ko-5.8b](https://huggingface.co/EleutherAI/polyglot-ko-5.8b) | 0.4356 | 0.5698 | 0.5187 | 0.5236 |
| [Polyglot-ko-12.8b](https://huggingface.co/EleutherAI/polyglot-ko-12.8b) | 0.4818 | 0.6041 | 0.6289 | 0.6448 |
| [Llama-2-Ko-7b 20B](https://huggingface.co/beomi/llama-2-ko-7b) | 0.3607 | 0.6797 | 0.6801 | 0.6622 |
| [Llama-2-Ko-7b 40B](https://huggingface.co/beomi/llama-2-ko-7b) | 0.5786 | 0.6977 | 0.7084 | 0.7144 |
| [KO-platypus2-7B-EX](https://huggingface.co/kyujinpy/KO-Platypus2-7B-ex) | 0.6028 | 0.6979 | 0.7016 | 0.6988 |  
| [KoT-platypus2-7B](https://huggingface.co/kyujinpy/KoT-platypus2-7B) | 0.6142 | 0.6757 | 0.6839 | 0.6878 | 
| **Poly-platypus-ko-12.8b(ours)** | 0.4888 | 0.6520 | 0.6568 | 0.6835 |   

> Classification
### SentiNeg (F1)
| Model | 0-shot | 5-shot | 10-shot | 50-shot |
| --- | --- | --- | --- | --- |
| [Polyglot-ko-5.8b](https://huggingface.co/EleutherAI/polyglot-ko-5.8b) | 0.3394 | 0.8841 | 0.8808 | 0.9521 |
| [Polyglot-ko-12.8b](https://huggingface.co/EleutherAI/polyglot-ko-12.8b) | 0.9117 | 0.9015 | 0.9345 | 0.9723 |
| [Llama-2-Ko-7b 20B](https://huggingface.co/beomi/llama-2-ko-7b) | 0.4855 | 0.8295 | 0.8711 | 0.8513 |
| [Llama-2-Ko-7b 40B](https://huggingface.co/beomi/llama-2-ko-7b) | 0.4594 | 0.7611 | 0.7276 | 0.9370 |
| [KO-platypus2-7B-EX](https://huggingface.co/kyujinpy/KO-Platypus2-7B-ex) | 0.5821 | 0.7653 | 0.7991 | 0.8643 |  
| [KoT-platypus2-7B](https://huggingface.co/kyujinpy/KoT-platypus2-7B) | 0.6127 | 0.7199 | 0.7531 | 0.8381 | 
| **Poly-platypus-ko-12.8b(ours)** | 0.8490 | 0.9597 | 0.9723 | 0.9847 |   
  
# Implementation Code
```python
### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

repo = "MarkrAI/kyujin-Poly-platypus-ko-12.8b"
CoT-llama = AutoModelForCausalLM.from_pretrained(
        repo,
        return_dict=True,
        torch_dtype=torch.float16,
        device_map='auto'
)
CoT-llama_tokenizer = AutoTokenizer.from_pretrained(repo)
```

> Readme format: [kyujinpy/KoT-platypus2-7B](https://huggingface.co/kyujinpy/KoT-platypus2-7B)

---