--- language: - ko datasets: - kyujinpy/KOpen-platypus library_name: transformers pipeline_tag: text-generation license: cc-by-nc-4.0 --- # **Poly-platypus-ko** **Polyglot-ko + KO-platypus2 = Poly-platypus-ko** ![img](./poly-platypus.png) ## Model Details **Model Developers** Kyujin Han (kyujinpy) **Input** Models input text only. **Output** Models generate text only. **Model Architecture** Poly-platypus-ko is an auto-regressive language model based on the LLaMA2 transformer architecture. **Repo Link** Github KO-platypus2: [KO-platypus2](https://github.com/Marker-Inc-Korea/KO-Platypus) Github Poly-platypus-ko: [Poly-platypus-ko](https://github.com/KyujinHan/Poly-platypus-ko) **Base Model** [Polyglot-ko-12.8b](https://huggingface.co/EleutherAI/polyglot-ko-12.8b) **Fine-tuning method** Same as [KO-Platypus2](https://github.com/Marker-Inc-Korea/CoT-llama2). **Training Dataset** I use [KOpen-platypus dataset](https://huggingface.co/datasets/kyujinpy/KOpen-platypus). I use A100 GPU 40GB and COLAB, when trianing. --- # **Model Bechmark1** ## KO-LLM leaderboard - Follow up as [Open KO-LLM LeaderBoard](https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard). | Model | Average |Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 | | --- | --- | --- | --- | --- | --- | --- | | Poly-platypus-ko-12.8b(ours) | NaN | NaN | NaN | NaN | NaN | NaN | | [KoT-platypus2-7B](https://huggingface.co/kyujinpy/KoT-platypus2-7B) | 45.62 | 38.05 | 49.63 | 34.68 | 37.69 | 68.08 | | [KO-platypus2-7B-EX](https://huggingface.co/kyujinpy/KO-Platypus2-7B-ex) | 45.41 | 39.08 | 50.86 | 34.60 | 37.94 | 64.55 | | [42MARU/polyglot-ko-12.8b-instruct](https://huggingface.co/42MARU/polyglot-ko-12.8b-instruct) | 43.89 | 36.35 | 51.59 | 26.38 | 45.16 | 59.98 | | [FINDA-FIT/llama-p](https://huggingface.co/FINDA-FIT/llama-p) | 43.63 | 39.59 | 50.74 | 33.85 | 38.09 | 55.87 | > Compare with Top 4 SOTA models. (update: 10/01) --- # **Model Benchmark2** ## LM Eval Harness - Korean (polyglot branch) - Used EleutherAI's [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/polyglot) > Question Answering (QA) ### COPA (F1) | Model | 0-shot | 5-shot | 10-shot | 50-shot | | --- | --- | --- | --- | --- | | [Polyglot-ko-5.8b](https://huggingface.co/EleutherAI/polyglot-ko-5.8b) | 0.7745 | 0.7676 | 0.7775 | 0.7887 | | [Polyglot-ko-12.8b](https://huggingface.co/EleutherAI/polyglot-ko-12.8b) | 0.7937 | 0.8108 | 0.8037 | 0.8369 | | [Llama-2-Ko-7b 20B](https://huggingface.co/beomi/llama-2-ko-7b) | 0.7388 | 0.7626 | 0.7808 | 0.7979 | | [Llama-2-Ko-7b 40B](https://huggingface.co/beomi/llama-2-ko-7b) | 0.7436 | 0.7927 | 0.8037 | 0.8259 | | [KO-platypus2-7B-EX](https://huggingface.co/kyujinpy/KO-Platypus2-7B-ex) | 0.7509 | 0.7899 | 0.8029 | 0.8290 | | [KoT-platypus2-7B](https://huggingface.co/kyujinpy/KoT-platypus2-7B) | 0.7517 | 0.7868 | 0.8009 | 0.8239 | | **Poly-platypus-ko-12.8b(ours)** | 0.7876 | 0.8099 | 0.8008 | 0.8239 | > Natural Language Inference (NLI; 자연어 추론 평가) ### HellaSwag (F1) | Model | 0-shot | 5-shot | 10-shot | 50-shot | | --- | --- | --- | --- | --- | | [Polyglot-ko-5.8b](https://huggingface.co/EleutherAI/polyglot-ko-5.8b) | 0.5976 | 0.5998 | 0.5979 | 0.6208 | | [Polyglot-ko-12.8b](https://huggingface.co/EleutherAI/polyglot-ko-12.8b) | 0.5954 | 0.6306 | 0.6098 | 0.6118 | | [Llama-2-Ko-7b 20B](https://huggingface.co/beomi/llama-2-ko-7b) | 0.4518 | 0.4668 | 0.4726 | 0.4828 | | [Llama-2-Ko-7b 40B](https://huggingface.co/beomi/llama-2-ko-7b) | 0.4562 | 0.4657 | 0.4698 | 0.4774 | | [KO-platypus2-7B-EX](https://huggingface.co/kyujinpy/KO-Platypus2-7B-ex) | 0.4571 | 0.4461 | 0.4371 | 0.4525 | | [KoT-platypus2-7B](https://huggingface.co/kyujinpy/KoT-platypus2-7B) | 0.4432 | 0.4382 | 0.4550 | 0.4534 | | **Poly-platypus-ko-12.8b(ours)** | 0.4838 | 0.4858 | 0.5005 | 0.5062 | > Question Answering (QA) ### BoolQ (F1) | Model | 0-shot | 5-shot | 10-shot | 50-shot | | --- | --- | --- | --- | --- | | [Polyglot-ko-5.8b](https://huggingface.co/EleutherAI/polyglot-ko-5.8b) | 0.4356 | 0.5698 | 0.5187 | 0.5236 | | [Polyglot-ko-12.8b](https://huggingface.co/EleutherAI/polyglot-ko-12.8b) | 0.4818 | 0.6041 | 0.6289 | 0.6448 | | [Llama-2-Ko-7b 20B](https://huggingface.co/beomi/llama-2-ko-7b) | 0.3607 | 0.6797 | 0.6801 | 0.6622 | | [Llama-2-Ko-7b 40B](https://huggingface.co/beomi/llama-2-ko-7b) | 0.5786 | 0.6977 | 0.7084 | 0.7144 | | [KO-platypus2-7B-EX](https://huggingface.co/kyujinpy/KO-Platypus2-7B-ex) | 0.6028 | 0.6979 | 0.7016 | 0.6988 | | [KoT-platypus2-7B](https://huggingface.co/kyujinpy/KoT-platypus2-7B) | 0.6142 | 0.6757 | 0.6839 | 0.6878 | | **Poly-platypus-ko-12.8b(ours)** | 0.4888 | 0.6520 | 0.6568 | 0.6835 | > Classification ### SentiNeg (F1) | Model | 0-shot | 5-shot | 10-shot | 50-shot | | --- | --- | --- | --- | --- | | [Polyglot-ko-5.8b](https://huggingface.co/EleutherAI/polyglot-ko-5.8b) | 0.3394 | 0.8841 | 0.8808 | 0.9521 | | [Polyglot-ko-12.8b](https://huggingface.co/EleutherAI/polyglot-ko-12.8b) | 0.9117 | 0.9015 | 0.9345 | 0.9723 | | [Llama-2-Ko-7b 20B](https://huggingface.co/beomi/llama-2-ko-7b) | 0.4855 | 0.8295 | 0.8711 | 0.8513 | | [Llama-2-Ko-7b 40B](https://huggingface.co/beomi/llama-2-ko-7b) | 0.4594 | 0.7611 | 0.7276 | 0.9370 | | [KO-platypus2-7B-EX](https://huggingface.co/kyujinpy/KO-Platypus2-7B-ex) | 0.5821 | 0.7653 | 0.7991 | 0.8643 | | [KoT-platypus2-7B](https://huggingface.co/kyujinpy/KoT-platypus2-7B) | 0.6127 | 0.7199 | 0.7531 | 0.8381 | | **Poly-platypus-ko-12.8b(ours)** | 0.8490 | 0.9597 | 0.9723 | 0.9847 | # Implementation Code ```python ### KO-Platypus from transformers import AutoModelForCausalLM, AutoTokenizer import torch repo = "MarkrAI/kyujin-Poly-platypus-ko-12.8b" CoT-llama = AutoModelForCausalLM.from_pretrained( repo, return_dict=True, torch_dtype=torch.float16, device_map='auto' ) CoT-llama_tokenizer = AutoTokenizer.from_pretrained(repo) ``` > Readme format: [kyujinpy/KoT-platypus2-7B](https://huggingface.co/kyujinpy/KoT-platypus2-7B) ---