--- library_name: transformers tags: - nli - bert - natural-language-inference language: - ru metrics: - accuracy - f1 - precision - recall base_model: - cointegrated/rubert-tiny2 pipeline_tag: text-classification model-index: - name: rubert-tiny-nli-terra-v0 results: - task: type: text-classification name: Text Classification dataset: name: TERRA type: NLI split: validation metrics: - type: accuracy value: 0.6677524429967426 name: Accuracy - type: f1 value: 0.6666666666666666 name: F1 - type: precision value: 0.6666666666666666 name: Precision - type: recall value: 0.6666666666666666 name: Recall --- **⚠️ Disclaimer: This model is in the early stages of development and may produce low-quality predictions. For better results, consider using the recommended Russian natural language inference models available [here](https://huggingface.co/cointegrated).** # RuBERT-tiny-nli v0 This model is an initial attempt to fine-tune the [RuBERT-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) model for a two-way natural language inference task, utilizing the Russian [Textual Entailment Recognition](https://russiansuperglue.com/tasks/task_info/TERRa) dataset. While it aims to enhance understanding of Russian text, its performance is currently limited. ## Usage How to run the model for NLI: ```python # !pip install transformers sentencepiece --quiet import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification model_id = 'Marwolaeth/rubert-tiny-nli-terra-v0' tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForSequenceClassification.from_pretrained(model_id) if torch.cuda.is_available(): model.cuda() # An example from the base model card premise1 = 'Сократ - человек, а все люди смертны.' hypothesis1 = 'Сократ никогда не умрёт.' with torch.inference_mode(): prediction = model( **tokenizer(premise1, hypothesis1, return_tensors='pt').to(model.device) ) p = torch.softmax(prediction.logits, -1).cpu().numpy()[0] print({v: p[k] for k, v in model.config.id2label.items()}) # {'not_entailment': 0.7698182, 'entailment': 0.23018183} # An example concerning sentiments premise2 = 'Я ненавижу желтые занавески' hypothesis2 = 'Мне нравятся желтые занавески' with torch.inference_mode(): prediction = model( **tokenizer(premise2, hypothesis2, return_tensors='pt').to(model.device) ) p = torch.softmax(prediction.logits, -1).cpu().numpy()[0] print({v: p[k] for k, v in model.config.id2label.items()}) # {'not_entailment': 0.60584205, 'entailment': 0.3941579} ``` ## Model Performance Metrics The following metrics summarize the performance of the model on the validation dataset: | Metric | Value | |----------------------------------|---------------------------| | **Validation Loss** | 0.6261 | | **Validation Accuracy** | 66.78% | | **Validation F1 Score** | 66.67% | | **Validation Precision** | 66.67% | | **Validation Recall** | 66.67% | | **Validation Runtime*** | 0.7043 seconds | | **Samples per Second*** | 435.88 | | **Steps per Second*** | 14.20 | *Using T4 GPU with Google Colab