--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer metrics: - accuracy model-index: - name: asl_aplhabet_img_classifier_v3 results: [] --- # asl_aplhabet_img_classifier_v3 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7922 - Accuracy: 0.7549 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 272 | 3.0038 | 0.3802 | | 3.0097 | 2.0 | 544 | 2.5739 | 0.5880 | | 3.0097 | 3.0 | 816 | 2.2886 | 0.6464 | | 2.3653 | 4.0 | 1088 | 2.0810 | 0.7099 | | 2.3653 | 5.0 | 1360 | 1.9355 | 0.7407 | | 1.9884 | 6.0 | 1632 | 1.8371 | 0.7582 | | 1.9884 | 7.0 | 1904 | 1.7752 | 0.7701 | | 1.8003 | 8.0 | 2176 | 1.7531 | 0.7674 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2