--- tags: - generated_from_trainer model-index: - name: fusion_asrtbsc_distilbert-uncased-best results: - task: type: dialogue act classification dataset: name: asapp/slue-phase-2 type: hvb metrics: - name: F1 macro E2E type: F1 macro value: 72.22 - name: F1 macro GT type: F1 macro value: 72.29 datasets: - asapp/slue-phase-2 language: - en metrics: - f1-macro --- # fusion_asrtbsc_distilbert-uncased-best ASR transcripts with prosody encoding and ASR encoding residual cross attention fusion multi-label DAC ## Model description ASR encoder: [Whisper small](https://huggingface.co/openai/whisper-small) encoder Prosody encoder: 2 layer transformer encoder with initial dense projection Backbone: [DistilBert uncased](https://huggingface.co/distilbert/distilbert-base-uncased) Fusion: 2 residual cross attention fusion layers (F_asr x F_text and F_prosody x F_text) with dense layer on top Pooling: Self attention Multi-label classification head: 2 dense layers with two dropouts 0.3 and Tanh activation inbetween ## Training and evaluation data Trained on ASR transcripts. Evaluated on ground truth (GT) and normalized [Whisper small](https://huggingface.co/openai/whisper-small) transcripts (E2E). ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00043 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1