MassMin commited on
Commit
9c406f7
·
verified ·
1 Parent(s): bd66339

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -1
README.md CHANGED
@@ -120,15 +120,19 @@ The model's performance is evaluated using the F1 score for NER. The predictions
120
  ## Evaluation
121
  '''python
122
  import torch
 
123
  from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
 
124
  import pandas as pd
125
 
126
 
127
  model_checkpoint = "MassMin/xlm-roberta-base-finetuned-panx-de" # Replace with your Hugging Face model name
 
128
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
129
 
130
 
131
  tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
 
132
  model = AutoModelForTokenClassification.from_pretrained(model_checkpoint).to(device)
133
 
134
 
@@ -136,6 +140,7 @@ ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer, framework="pt",
136
 
137
 
138
  def tag_text_with_pipeline(text, ner_pipeline):
 
139
  # Use the NER pipeline to get predictions
140
  results = ner_pipeline(text)
141
 
@@ -147,9 +152,12 @@ def tag_text_with_pipeline(text, ner_pipeline):
147
 
148
 
149
  text = "Jeff Dean works at Google in California."
 
150
  result = tag_text_with_pipeline(text, ner_pipeline)
 
151
  print(result)
152
- '''
 
153
  <!-- This section describes the evaluation protocols and provides the results. -->
154
 
155
  ### Testing Data, Factors & Metrics
 
120
  ## Evaluation
121
  '''python
122
  import torch
123
+
124
  from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
125
+
126
  import pandas as pd
127
 
128
 
129
  model_checkpoint = "MassMin/xlm-roberta-base-finetuned-panx-de" # Replace with your Hugging Face model name
130
+
131
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
132
 
133
 
134
  tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
135
+
136
  model = AutoModelForTokenClassification.from_pretrained(model_checkpoint).to(device)
137
 
138
 
 
140
 
141
 
142
  def tag_text_with_pipeline(text, ner_pipeline):
143
+
144
  # Use the NER pipeline to get predictions
145
  results = ner_pipeline(text)
146
 
 
152
 
153
 
154
  text = "Jeff Dean works at Google in California."
155
+
156
  result = tag_text_with_pipeline(text, ner_pipeline)
157
+
158
  print(result)
159
+
160
+
161
  <!-- This section describes the evaluation protocols and provides the results. -->
162
 
163
  ### Testing Data, Factors & Metrics