File size: 3,512 Bytes
a1a8d9b
39d5582
a1a8d9b
39d5582
a1a8d9b
39d5582
a1a8d9b
39d5582
 
 
 
 
 
a1a8d9b
 
39d5582
a1a8d9b
39d5582
a1a8d9b
39d5582
a1a8d9b
 
 
 
 
 
 
 
 
 
 
 
39d5582
a1a8d9b
 
 
39d5582
a1a8d9b
 
 
f3220f1
a1a8d9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
base_model: MathGenie/Mistral-7B-Ours-SFT
tags:
- math
model-index:
- name: Mistral-7B-Ours-SFT-SCDPO
  results: []
license: apache-2.0
language:
- en
metrics:
- accuracy
pipeline_tag: text-generation
---

# Mistral-7B-Ours-SFT-SCDPO

This model is a fine-tuned version of MathGenie/Mistral-7B-Ours-SFT.
It achieves the following results on the evaluation set:

- Loss: 0.1793
- Rewards/chosen: 0.2587
- Rewards/rejected: -7.0301
- Rewards/accuracies: 0.8947
- Rewards/margins: 7.2889
- Logps/rejected: -253.7773
- Logps/chosen: -80.3105
- Logits/rejected: -2.3417
- Logits/chosen: -2.3846

## Model description

This is a model fine-tuned for mathematical problem-solving.

## Intended uses & limitations

The model is intended for solving math problems.

## Training and evaluation data

![eval](./eval.png)

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-07
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.3963        | 0.21  | 100  | 0.3636          | 1.8634         | -0.1518          | 0.8816             | 2.0152          | -184.9944      | -64.2644     | -2.7112         | -2.7505       |
| 0.2849        | 0.43  | 200  | 0.2598          | 0.7706         | -3.7221          | 0.8816             | 4.4927          | -220.6974      | -75.1921     | -2.5067         | -2.5475       |
| 0.2496        | 0.64  | 300  | 0.2295          | 0.9323         | -4.2717          | 0.8684             | 5.2040          | -226.1934      | -73.5753     | -2.5080         | -2.5494       |
| 0.2331        | 0.86  | 400  | 0.2089          | 0.7871         | -4.8912          | 0.8684             | 5.6783          | -232.3884      | -75.0269     | -2.4967         | -2.5382       |
| 0.0874        | 1.07  | 500  | 0.1872          | 0.6345         | -5.7444          | 0.8816             | 6.3789          | -240.9202      | -76.5527     | -2.4323         | -2.4761       |
| 0.1217        | 1.28  | 600  | 0.1832          | 0.2282         | -6.6907          | 0.8684             | 6.9188          | -250.3827      | -80.6161     | -2.3741         | -2.4172       |
| 0.0966        | 1.5   | 700  | 0.1807          | 0.1849         | -7.0125          | 0.8816             | 7.1975          | -253.6012      | -81.0485     | -2.3503         | -2.3940       |
| 0.0755        | 1.71  | 800  | 0.1802          | 0.3224         | -6.9539          | 0.8947             | 7.2763          | -253.0150      | -79.6739     | -2.3437         | -2.3867       |
| 0.1177        | 1.93  | 900  | 0.1793          | 0.2587         | -7.0301          | 0.8947             | 7.2889          | -253.7773      | -80.3105     | -2.3417         | -2.3846       |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.14.6
- Tokenizers 0.15.2