--- base_model: /mnt/cache/luzimu/rlhf_math/alignment-handbook/outs/Mistral-7B-v0.1-lce tags: - alignment-handbook - generated_from_trainer datasets: - /mnt/cache/luzimu/rlhf_math/data/controled_steps_math_gsm8k_lce_dpo_ascend_lim2_lim3_add_dpo1x1 model-index: - name: Mistral-7B-v0.1-lce_controled_steps_dpo_ascend_lim2_lim3_add_dpo1x1 results: [] --- # Mistral-7B-v0.1-lce_controled_steps_dpo_ascend_lim2_lim3_add_dpo1x1 This model is a fine-tuned version of [/mnt/cache/luzimu/rlhf_math/alignment-handbook/outs/Mistral-7B-v0.1-lce](https://huggingface.co//mnt/cache/luzimu/rlhf_math/alignment-handbook/outs/Mistral-7B-v0.1-lce) on the /mnt/cache/luzimu/rlhf_math/data/controled_steps_math_gsm8k_lce_dpo_ascend_lim2_lim3_add_dpo1x1 dataset. It achieves the following results on the evaluation set: - Loss: 0.1793 - Rewards/chosen: 0.2587 - Rewards/rejected: -7.0301 - Rewards/accuracies: 0.8947 - Rewards/margins: 7.2889 - Logps/rejected: -253.7773 - Logps/chosen: -80.3105 - Logits/rejected: -2.3417 - Logits/chosen: -2.3846 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-07 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.3963 | 0.21 | 100 | 0.3636 | 1.8634 | -0.1518 | 0.8816 | 2.0152 | -184.9944 | -64.2644 | -2.7112 | -2.7505 | | 0.2849 | 0.43 | 200 | 0.2598 | 0.7706 | -3.7221 | 0.8816 | 4.4927 | -220.6974 | -75.1921 | -2.5067 | -2.5475 | | 0.2496 | 0.64 | 300 | 0.2295 | 0.9323 | -4.2717 | 0.8684 | 5.2040 | -226.1934 | -73.5753 | -2.5080 | -2.5494 | | 0.2331 | 0.86 | 400 | 0.2089 | 0.7871 | -4.8912 | 0.8684 | 5.6783 | -232.3884 | -75.0269 | -2.4967 | -2.5382 | | 0.0874 | 1.07 | 500 | 0.1872 | 0.6345 | -5.7444 | 0.8816 | 6.3789 | -240.9202 | -76.5527 | -2.4323 | -2.4761 | | 0.1217 | 1.28 | 600 | 0.1832 | 0.2282 | -6.6907 | 0.8684 | 6.9188 | -250.3827 | -80.6161 | -2.3741 | -2.4172 | | 0.0966 | 1.5 | 700 | 0.1807 | 0.1849 | -7.0125 | 0.8816 | 7.1975 | -253.6012 | -81.0485 | -2.3503 | -2.3940 | | 0.0755 | 1.71 | 800 | 0.1802 | 0.3224 | -6.9539 | 0.8947 | 7.2763 | -253.0150 | -79.6739 | -2.3437 | -2.3867 | | 0.1177 | 1.93 | 900 | 0.1793 | 0.2587 | -7.0301 | 0.8947 | 7.2889 | -253.7773 | -80.3105 | -2.3417 | -2.3846 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.2 - Datasets 2.14.6 - Tokenizers 0.15.2