--- license: mit language: - en base_model: - codellama/CodeLlama-7b-hf - codellama/CodeLlama-7b-Python-hf library_name: transformers tags: - mergekit - merged-model - codellama - programming - language-model --- # 🚀 CodeLlama-Hybrid-7B: Optimized for Code Generation ## 📌 Overview **CodeLlama-Hybrid-7B** is an **experimental hybrid language model** that merges the capabilities of two CodeLlama variants. Built using **MergeKit**, this model is optimized for programming-related tasks, balancing efficiency and performance in code generation and understanding. 🔗 **Created by**: Matteo Khan 🎓 **Affiliation**: Apprentice at TW3 Partners (Generative AI Research) 📍 **License**: MIT 🔗 [Connect with me on LinkedIn](https://www.linkedin.com/in/matteo-khan-a10309263/) 🔍 [Model on Hugging Face](https://huggingface.co/MatteoKhan/CodeLlama-Hybrid-7B) ## 🧠 Model Details - **Model Type**: Hybrid Language Model (Merged for Code Generation) - **Parent Models**: - [CodeLlama-7B](https://huggingface.co/codellama/CodeLlama-7b-hf) - [CodeLlama-7B-Python](https://huggingface.co/codellama/CodeLlama-7b-Python-hf) - **Merging Technique**: Linear Merge (MergeKit) - **Tokenizer Source**: `codellama/CodeLlama-7b-hf` ## 🎯 Intended Use This model is designed for **code-related tasks** and experimentation in hybrid model optimization. Possible applications include: - ✅ Code Generation - ✅ Code Completion & Assistance - ✅ Code Understanding & Refactoring - ✅ Exploration of Model Merging Effects on Programming Tasks ## ⚠️ Limitations & Considerations While **CodeLlama-Hybrid-7B** provides enhanced code generation capabilities, it inherits some limitations from its parent models: - ❌ May produce **incorrect or insecure** code - ⚠️ Can generate **biased, offensive, or inappropriate** content - 🔄 Merging may introduce **unpredictable behaviors** - 📉 Performance may **vary depending on the programming language and context** ## 🔬 Merging Process & Configuration This is **not a newly trained model**, but rather a merge of existing models using the following configuration: ```yaml merge_method: linear dtype: float16 allow_crimes: true models: - model: "codellama/CodeLlama-7b-hf" parameters: t: 1.0 weight: 0.5 - model: "codellama/CodeLlama-7b-Python-hf" parameters: t: 1.0 weight: 0.5 parameters: normalize: true int8_mask: false ignore_mismatched_sizes: true layers: - pattern: "model.*" tokenizer_source: "codellama/CodeLlama-7b-hf" ``` 📊 **No formal evaluation** has been conducted yet. Users are encouraged to **benchmark and share feedback**! ## 🌍 Environmental Impact By utilizing **model merging** instead of training from scratch, **CodeLlama-Hybrid-7B** significantly reduces computational and environmental costs. ## 🚀 How to Use ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "MatteoKhan/CodeLlama-Hybrid-7B" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Example usage prompt = "Write a Python function to calculate Fibonacci numbers." inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_length=200) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` 📩 **Feedback & Contact**: Reach out via [Hugging Face](https://huggingface.co/MatteoKhan). 🎉 **Happy Coding!** 🚀