MattiaTintori
commited on
Push model using huggingface_hub.
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +238 -0
- config.json +29 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +9 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +61 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
|
3 |
+
library_name: setfit
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
tags:
|
8 |
+
- setfit
|
9 |
+
- absa
|
10 |
+
- sentence-transformers
|
11 |
+
- text-classification
|
12 |
+
- generated_from_setfit_trainer
|
13 |
+
widget:
|
14 |
+
- text: Locale:Locale molto bene arredato, con stile e atmosfera tipica valtellinese.
|
15 |
+
Cucina ottima, dal bastone di carne al pesce, dai pizzoccheri agli gnocchetti,
|
16 |
+
dal vino ai dolci, tutto perfetto e soprattutto di grande qualità... Filippo
|
17 |
+
poi è un’autentica forza della natura, molto simpatico, cordiale e amichevole,...Altro
|
18 |
+
- text: cucina:Locale accogliente e familiare...bravissima la ragazza in cucina, come
|
19 |
+
le ragazze al banco e in sala! CONSIGLIATO
|
20 |
+
- text: servizio:Il servizio era impeccabile e il tortello di zucca era sublime.
|
21 |
+
- text: cucina:Il ristorante propone piatti vegetariani che NON sono vegetariani.
|
22 |
+
Dopo aver specificato al servizio la nostra etica alimentare, ci è stata consigliata
|
23 |
+
una portata che durante la consumazione abbiamo constatato con amarezza che avesse
|
24 |
+
parti di maiale come ingredienti (confermato dalla cucina). Poco valgono le...scuse
|
25 |
+
del servizio, trovo assurdo e inconcepibile che situazioni del genere possano
|
26 |
+
accadere nel 2024. Evidentemente questo è indice della poca professionalità di
|
27 |
+
questo ristorante.Altro
|
28 |
+
- text: servizio:La polenta con formaggio era saporita, ma il servizio è stato lento.
|
29 |
+
inference: false
|
30 |
+
model-index:
|
31 |
+
- name: SetFit Aspect Model with sentence-transformers/paraphrase-multilingual-mpnet-base-v2
|
32 |
+
results:
|
33 |
+
- task:
|
34 |
+
type: text-classification
|
35 |
+
name: Text Classification
|
36 |
+
dataset:
|
37 |
+
name: Unknown
|
38 |
+
type: unknown
|
39 |
+
split: test
|
40 |
+
metrics:
|
41 |
+
- type: f1
|
42 |
+
value: 0.8096514745308312
|
43 |
+
name: F1
|
44 |
+
---
|
45 |
+
|
46 |
+
# SetFit Aspect Model with sentence-transformers/paraphrase-multilingual-mpnet-base-v2
|
47 |
+
|
48 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) as the Sentence Transformer embedding model. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.
|
49 |
+
|
50 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
51 |
+
|
52 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
53 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
54 |
+
|
55 |
+
This model was trained within the context of a larger system for ABSA, which looks like so:
|
56 |
+
|
57 |
+
1. Use a spaCy model to select possible aspect span candidates.
|
58 |
+
2. **Use this SetFit model to filter these possible aspect span candidates.**
|
59 |
+
3. Use a SetFit model to classify the filtered aspect span candidates.
|
60 |
+
|
61 |
+
## Model Details
|
62 |
+
|
63 |
+
### Model Description
|
64 |
+
- **Model Type:** SetFit
|
65 |
+
- **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2)
|
66 |
+
- **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance
|
67 |
+
- **spaCy Model:** it_core_news_lg
|
68 |
+
- **SetFitABSA Aspect Model:** [MattiaTintori/Final_aspect_Colab_It](https://huggingface.co/MattiaTintori/Final_aspect_Colab_It)
|
69 |
+
- **SetFitABSA Polarity Model:** [setfit-absa-polarity](https://huggingface.co/setfit-absa-polarity)
|
70 |
+
- **Maximum Sequence Length:** 128 tokens
|
71 |
+
- **Number of Classes:** 2 classes
|
72 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
73 |
+
<!-- - **Language:** Unknown -->
|
74 |
+
<!-- - **License:** Unknown -->
|
75 |
+
|
76 |
+
### Model Sources
|
77 |
+
|
78 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
79 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
80 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
81 |
+
|
82 |
+
### Model Labels
|
83 |
+
| Label | Examples |
|
84 |
+
|:----------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
85 |
+
| aspect | <ul><li>"tavolo:Purtroppo tutte le volte, ed è anni, che tento di prenotare non sono mai stato fortunato........devo dirvi che ora ho un po' perso la poesia!!!!!! O aggiungono tavoli o cambiano location......mai fatta cosi tanta fatica per trovare un tavolo!!!!! Non so francamente se comporro' ancora...Altro"</li><li>'spesa:Devo premettere che sono sempre stato ospite e non so la spesa.Da quanto posso intuire la carne la fa da padrona ed essendo io ve non posso giudicare.Per me trovo sempre cose piacevoli come antipasti a buffet,primi veg riso alle verdure, trofie al pesto patate...Altro'</li><li>'carne:Devo premettere che sono sempre stato ospite e non so la spesa.Da quanto posso intuire la carne la fa da padrona ed essendo io ve non posso giudicare.Per me trovo sempre cose piacevoli come antipasti a buffet,primi veg riso alle verdure, trofie al pesto patate...Altro'</li></ul> |
|
86 |
+
| no aspect | <ul><li>"volte:Purtroppo tutte le volte, ed è anni, che tento di prenotare non sono mai stato fortunato........devo dirvi che ora ho un po' perso la poesia!!!!!! O aggiungono tavoli o cambiano location......mai fatta cosi tanta fatica per trovare un tavolo!!!!! Non so francamente se comporro' ancora...Altro"</li><li>"anni:Purtroppo tutte le volte, ed è anni, che tento di prenotare non sono mai stato fortunato........devo dirvi che ora ho un po' perso la poesia!!!!!! O aggiungono tavoli o cambiano location......mai fatta cosi tanta fatica per trovare un tavolo!!!!! Non so francamente se comporro' ancora...Altro"</li><li>"poesia:Purtroppo tutte le volte, ed è anni, che tento di prenotare non sono mai stato fortunato........devo dirvi che ora ho un po' perso la poesia!!!!!! O aggiungono tavoli o cambiano location......mai fatta cosi tanta fatica per trovare un tavolo!!!!! Non so francamente se comporro' ancora...Altro"</li></ul> |
|
87 |
+
|
88 |
+
## Evaluation
|
89 |
+
|
90 |
+
### Metrics
|
91 |
+
| Label | F1 |
|
92 |
+
|:--------|:-------|
|
93 |
+
| **all** | 0.8097 |
|
94 |
+
|
95 |
+
## Uses
|
96 |
+
|
97 |
+
### Direct Use for Inference
|
98 |
+
|
99 |
+
First install the SetFit library:
|
100 |
+
|
101 |
+
```bash
|
102 |
+
pip install setfit
|
103 |
+
```
|
104 |
+
|
105 |
+
Then you can load this model and run inference.
|
106 |
+
|
107 |
+
```python
|
108 |
+
from setfit import AbsaModel
|
109 |
+
|
110 |
+
# Download from the 🤗 Hub
|
111 |
+
model = AbsaModel.from_pretrained(
|
112 |
+
"MattiaTintori/Final_aspect_Colab_It",
|
113 |
+
"setfit-absa-polarity",
|
114 |
+
)
|
115 |
+
# Run inference
|
116 |
+
preds = model("The food was great, but the venue is just way too busy.")
|
117 |
+
```
|
118 |
+
|
119 |
+
<!--
|
120 |
+
### Downstream Use
|
121 |
+
|
122 |
+
*List how someone could finetune this model on their own dataset.*
|
123 |
+
-->
|
124 |
+
|
125 |
+
<!--
|
126 |
+
### Out-of-Scope Use
|
127 |
+
|
128 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
129 |
+
-->
|
130 |
+
|
131 |
+
<!--
|
132 |
+
## Bias, Risks and Limitations
|
133 |
+
|
134 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
135 |
+
-->
|
136 |
+
|
137 |
+
<!--
|
138 |
+
### Recommendations
|
139 |
+
|
140 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
141 |
+
-->
|
142 |
+
|
143 |
+
## Training Details
|
144 |
+
|
145 |
+
### Training Set Metrics
|
146 |
+
| Training set | Min | Median | Max |
|
147 |
+
|:-------------|:----|:--------|:----|
|
148 |
+
| Word count | 9 | 40.3192 | 137 |
|
149 |
+
|
150 |
+
| Label | Training Sample Count |
|
151 |
+
|:----------|:----------------------|
|
152 |
+
| no aspect | 1379 |
|
153 |
+
| aspect | 1378 |
|
154 |
+
|
155 |
+
### Training Hyperparameters
|
156 |
+
- batch_size: (128, 32)
|
157 |
+
- num_epochs: (5, 32)
|
158 |
+
- max_steps: -1
|
159 |
+
- sampling_strategy: oversampling
|
160 |
+
- num_iterations: 10
|
161 |
+
- body_learning_rate: (5e-05, 5e-05)
|
162 |
+
- head_learning_rate: 0.01
|
163 |
+
- loss: CosineSimilarityLoss
|
164 |
+
- distance_metric: cosine_distance
|
165 |
+
- margin: 0.25
|
166 |
+
- end_to_end: False
|
167 |
+
- use_amp: True
|
168 |
+
- warmup_proportion: 0.1
|
169 |
+
- l2_weight: 0.02
|
170 |
+
- seed: 42
|
171 |
+
- eval_max_steps: -1
|
172 |
+
- load_best_model_at_end: True
|
173 |
+
|
174 |
+
### Training Results
|
175 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
176 |
+
|:----------:|:-------:|:-------------:|:---------------:|
|
177 |
+
| 0.0023 | 1 | 0.2484 | - |
|
178 |
+
| 0.0464 | 20 | 0.2718 | 0.259 |
|
179 |
+
| 0.0928 | 40 | 0.2581 | 0.2544 |
|
180 |
+
| 0.1392 | 60 | 0.2266 | 0.2475 |
|
181 |
+
| 0.1856 | 80 | 0.233 | 0.2298 |
|
182 |
+
| 0.2320 | 100 | 0.2104 | 0.2145 |
|
183 |
+
| **0.2784** | **120** | **0.1487** | **0.2106** |
|
184 |
+
| 0.3248 | 140 | 0.1615 | 0.2314 |
|
185 |
+
| 0.3712 | 160 | 0.1328 | 0.2164 |
|
186 |
+
| 0.4176 | 180 | 0.0905 | 0.2164 |
|
187 |
+
| 0.4640 | 200 | 0.0934 | 0.2517 |
|
188 |
+
| 0.5104 | 220 | 0.0942 | 0.2185 |
|
189 |
+
| 0.5568 | 240 | 0.0774 | 0.2469 |
|
190 |
+
| 0.6032 | 260 | 0.1013 | 0.2248 |
|
191 |
+
| 0.6497 | 280 | 0.0781 | 0.2221 |
|
192 |
+
| 0.6961 | 300 | 0.0386 | 0.2362 |
|
193 |
+
| 0.7425 | 320 | 0.084 | 0.2386 |
|
194 |
+
|
195 |
+
* The bold row denotes the saved checkpoint.
|
196 |
+
### Framework Versions
|
197 |
+
- Python: 3.10.12
|
198 |
+
- SetFit: 1.0.3
|
199 |
+
- Sentence Transformers: 3.1.0
|
200 |
+
- spaCy: 3.7.6
|
201 |
+
- Transformers: 4.39.0
|
202 |
+
- PyTorch: 2.4.0+cu121
|
203 |
+
- Datasets: 3.0.0
|
204 |
+
- Tokenizers: 0.15.2
|
205 |
+
|
206 |
+
## Citation
|
207 |
+
|
208 |
+
### BibTeX
|
209 |
+
```bibtex
|
210 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
211 |
+
doi = {10.48550/ARXIV.2209.11055},
|
212 |
+
url = {https://arxiv.org/abs/2209.11055},
|
213 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
214 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
215 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
216 |
+
publisher = {arXiv},
|
217 |
+
year = {2022},
|
218 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
219 |
+
}
|
220 |
+
```
|
221 |
+
|
222 |
+
<!--
|
223 |
+
## Glossary
|
224 |
+
|
225 |
+
*Clearly define terms in order to be accessible across audiences.*
|
226 |
+
-->
|
227 |
+
|
228 |
+
<!--
|
229 |
+
## Model Card Authors
|
230 |
+
|
231 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
232 |
+
-->
|
233 |
+
|
234 |
+
<!--
|
235 |
+
## Model Card Contact
|
236 |
+
|
237 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
238 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "checkpoints/step_120",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_position_embeddings": 514,
|
18 |
+
"model_type": "xlm-roberta",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"output_past": true,
|
22 |
+
"pad_token_id": 1,
|
23 |
+
"position_embedding_type": "absolute",
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.39.0",
|
26 |
+
"type_vocab_size": 1,
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 250002
|
29 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.1.0",
|
4 |
+
"transformers": "4.39.0",
|
5 |
+
"pytorch": "2.4.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"labels": [
|
3 |
+
"no aspect",
|
4 |
+
"aspect"
|
5 |
+
],
|
6 |
+
"span_context": 0,
|
7 |
+
"spacy_model": "it_core_news_lg",
|
8 |
+
"normalize_embeddings": true
|
9 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:50d7562656c94f845bd0e3d3ab4a6af2d18afe0121ad2f04476ba9892831296c
|
3 |
+
size 1112197096
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ca6599d277cbdd7a1a332c4e3ae54464d35b4e31b449a85cef84a7cde9203a9
|
3 |
+
size 7706
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fa685fc160bbdbab64058d4fc91b60e62d207e8dc60b9af5c002c5ab946ded00
|
3 |
+
size 17083009
|
tokenizer_config.json
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"max_length": 128,
|
50 |
+
"model_max_length": 128,
|
51 |
+
"pad_to_multiple_of": null,
|
52 |
+
"pad_token": "<pad>",
|
53 |
+
"pad_token_type_id": 0,
|
54 |
+
"padding_side": "right",
|
55 |
+
"sep_token": "</s>",
|
56 |
+
"stride": 0,
|
57 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
58 |
+
"truncation_side": "right",
|
59 |
+
"truncation_strategy": "longest_first",
|
60 |
+
"unk_token": "<unk>"
|
61 |
+
}
|