File size: 2,430 Bytes
9086f91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---

license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: VIT-ASVspoof5-MFCC-Synthetic-Voice-Detection
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: validation
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.686952820148989
    - name: F1
      type: f1
      value: 0.7634000386075542
    - name: Precision
      type: precision
      value: 0.9259586867162704
    - name: Recall
      type: recall
      value: 0.6493942490147424
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# VIT-ASVspoof5-MFCC-Synthetic-Voice-Detection

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8475
- Accuracy: 0.6870
- F1: 0.7634
- Precision: 0.9260
- Recall: 0.6494

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05

- train_batch_size: 8

- eval_batch_size: 8

- seed: 42

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- num_epochs: 3.0

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.0335        | 1.0   | 22795 | 1.1422          | 0.7655   | 0.8411 | 0.8892    | 0.7979 |
| 0.0104        | 2.0   | 45590 | 1.9972          | 0.6301   | 0.6979 | 0.9567    | 0.5493 |
| 0.0035        | 3.0   | 68385 | 2.8475          | 0.6870   | 0.7634 | 0.9260    | 0.6494 |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0+cu124
- Datasets 2.20.0
- Tokenizers 0.19.1