--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: VIT-VoxCelebSpoof-MFCC-Synthetic-Voice-Detection-New results: [] --- # VIT-VoxCelebSpoof-MFCC-Synthetic-Voice-Detection-New This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0001 - Accuracy: 1.0000 - F1: 1.0000 - Precision: 1.0 - Recall: 1.0000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.0 | 1.0 | 29527 | 0.0006 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | | 0.0 | 2.0 | 59054 | 0.0002 | 0.9999 | 1.0000 | 1.0000 | 1.0000 | | 0.0 | 3.0 | 88581 | 0.0001 | 1.0000 | 1.0000 | 1.0 | 1.0000 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1