Maverick98
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -51,19 +51,66 @@ Use the code below to get started with EcommerceClassifier:
|
|
51 |
|
52 |
```python
|
53 |
import torch
|
54 |
-
from transformers import
|
55 |
import json
|
56 |
import requests
|
57 |
from PIL import Image
|
58 |
from torchvision import transforms
|
59 |
import urllib.request
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
# Load the label-to-class mapping from Hugging Face
|
62 |
label_map_url = "https://huggingface.co/Maverick98/EcommerceClassifier/resolve/main/label_to_class.json"
|
63 |
label_to_class = requests.get(label_map_url).json()
|
64 |
|
65 |
-
# Load the model
|
66 |
-
model =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
tokenizer = AutoTokenizer.from_pretrained("jinaai/jina-embeddings-v2-base-en")
|
68 |
|
69 |
# Define image preprocessing
|
@@ -124,13 +171,6 @@ print("Prediction Results:")
|
|
124 |
for class_name, prob in results.items():
|
125 |
print(f"Class: {class_name}, Probability: {prob}")
|
126 |
|
127 |
-
# Map the top 3 indices to class names
|
128 |
-
top3_classes = [label_to_class[str(idx.item())] for idx in top3_indices[0]]
|
129 |
-
|
130 |
-
# Output the class names and their probabilities
|
131 |
-
for i in range(3):
|
132 |
-
print(f"Class: {top3_classes[i]}, Probability: {top3_probabilities[0][i].item()}")
|
133 |
-
|
134 |
```
|
135 |
|
136 |
# Training Details
|
|
|
51 |
|
52 |
```python
|
53 |
import torch
|
54 |
+
from transformers import AutoTokenizer, AutoModel
|
55 |
import json
|
56 |
import requests
|
57 |
from PIL import Image
|
58 |
from torchvision import transforms
|
59 |
import urllib.request
|
60 |
+
import torch.nn as nn
|
61 |
+
|
62 |
+
# --- Define the Model ---
|
63 |
+
class FineGrainedClassifier(nn.Module):
|
64 |
+
def __init__(self, num_classes=434): # Updated to 434 classes
|
65 |
+
super(FineGrainedClassifier, self).__init__()
|
66 |
+
self.image_encoder = torch.hub.load('pytorch/vision:v0.10.0', 'resnet50', pretrained=True)
|
67 |
+
self.image_encoder.fc = nn.Identity()
|
68 |
+
self.text_encoder = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-en')
|
69 |
+
self.classifier = nn.Sequential(
|
70 |
+
nn.Linear(2048 + 768, 1024),
|
71 |
+
nn.BatchNorm1d(1024),
|
72 |
+
nn.ReLU(),
|
73 |
+
nn.Dropout(0.3),
|
74 |
+
nn.Linear(1024, 512),
|
75 |
+
nn.BatchNorm1d(512),
|
76 |
+
nn.ReLU(),
|
77 |
+
nn.Dropout(0.3),
|
78 |
+
nn.Linear(512, num_classes) # Updated to 434 classes
|
79 |
+
)
|
80 |
+
|
81 |
+
def forward(self, image, input_ids, attention_mask):
|
82 |
+
image_features = self.image_encoder(image)
|
83 |
+
text_output = self.text_encoder(input_ids=input_ids, attention_mask=attention_mask)
|
84 |
+
text_features = text_output.last_hidden_state[:, 0, :]
|
85 |
+
combined_features = torch.cat((image_features, text_features), dim=1)
|
86 |
+
output = self.classifier(combined_features)
|
87 |
+
return output
|
88 |
|
89 |
# Load the label-to-class mapping from Hugging Face
|
90 |
label_map_url = "https://huggingface.co/Maverick98/EcommerceClassifier/resolve/main/label_to_class.json"
|
91 |
label_to_class = requests.get(label_map_url).json()
|
92 |
|
93 |
+
# Load the custom model
|
94 |
+
model = FineGrainedClassifier(num_classes=len(label_to_class))
|
95 |
+
checkpoint_url = f"https://huggingface.co/Maverick98/EcommerceClassifier/resolve/main/model_checkpoint.pth"
|
96 |
+
checkpoint = torch.hub.load_state_dict_from_url(checkpoint_url, map_location=torch.device('cpu'))
|
97 |
+
|
98 |
+
# Clean up the state dictionary
|
99 |
+
state_dict = checkpoint.get('model_state_dict', checkpoint)
|
100 |
+
new_state_dict = {}
|
101 |
+
for k, v in state_dict.items():
|
102 |
+
if k.startswith("module."):
|
103 |
+
new_key = k[7:] # Remove "module." prefix
|
104 |
+
else:
|
105 |
+
new_key = k
|
106 |
+
|
107 |
+
# Check if the new_key exists in the model's state_dict, only add if it does
|
108 |
+
if new_key in model.state_dict():
|
109 |
+
new_state_dict[new_key] = v
|
110 |
+
|
111 |
+
model.load_state_dict(new_state_dict)
|
112 |
+
|
113 |
+
# Load the tokenizer from Jina
|
114 |
tokenizer = AutoTokenizer.from_pretrained("jinaai/jina-embeddings-v2-base-en")
|
115 |
|
116 |
# Define image preprocessing
|
|
|
171 |
for class_name, prob in results.items():
|
172 |
print(f"Class: {class_name}, Probability: {prob}")
|
173 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
```
|
175 |
|
176 |
# Training Details
|