Update README.md
Browse files
README.md
CHANGED
@@ -23,10 +23,102 @@ pipeline_tag: automatic-speech-recognition
|
|
23 |
</a>
|
24 |
</div>
|
25 |
|
26 |
-
## Overview
|
27 |
|
28 |
-
**Splitformer** is a 36.7M parameters Conformer-based ASR model trained from scratch on 1000 hours of the LibriSpeech dataset with an early‐exit objective
|
29 |
|
30 |
-
This architecture introduces parallel downsampling layers before the first and last exits to improve performance with minimal extra overhead, while retaining inference speed.
|
31 |
|
32 |
-
Our code for training and inference is available on our [GitHub](https://github.com/augustgw/early-exit-transformer) repository.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
</a>
|
24 |
</div>
|
25 |
|
26 |
+
## 1. Overview
|
27 |
|
28 |
+
**Splitformer** is a 36.7M parameters Conformer-based ASR model trained from scratch on 1000 hours of the **LibriSpeech dataset** with an **early‐exit objective**.
|
29 |
|
30 |
+
This architecture introduces **parallel downsampling layers** before the first and last exits to improve performance with minimal extra overhead, while retaining inference speed.
|
31 |
|
32 |
+
Our code for training and inference is available on our [GitHub](https://github.com/augustgw/early-exit-transformer) repository.
|
33 |
+
|
34 |
+
### 2. Results on LibriSpeech
|
35 |
+
|
36 |
+
<table>
|
37 |
+
<thead>
|
38 |
+
<tr>
|
39 |
+
<th rowspan="2">Layer</th>
|
40 |
+
<th colspan="2">EE-baseline (31.5M)</th>
|
41 |
+
<th colspan="2">Splitformer (36.7M)</th>
|
42 |
+
<th colspan="2">Wav2Vec2 (94.0M)</th>
|
43 |
+
<th colspan="2">WavLM (94.7M)</th>
|
44 |
+
</tr>
|
45 |
+
<tr>
|
46 |
+
<th>test-clean</th>
|
47 |
+
<th>test-other</th>
|
48 |
+
<th>test-clean</th>
|
49 |
+
<th>test-other</th>
|
50 |
+
<th>test-clean</th>
|
51 |
+
<th>test-other</th>
|
52 |
+
<th>test-clean</th>
|
53 |
+
<th>test-other</th>
|
54 |
+
</tr>
|
55 |
+
</thead>
|
56 |
+
<tbody>
|
57 |
+
<tr>
|
58 |
+
<td>2</td>
|
59 |
+
<td>31.0</td>
|
60 |
+
<td>51.0</td>
|
61 |
+
<td>28.1</td>
|
62 |
+
<td>48.3</td>
|
63 |
+
<td>33.7</td>
|
64 |
+
<td>56.0</td>
|
65 |
+
<td>28.0</td>
|
66 |
+
<td>48.5</td>
|
67 |
+
</tr>
|
68 |
+
<tr>
|
69 |
+
<td>4</td>
|
70 |
+
<td>11.7</td>
|
71 |
+
<td>27.8</td>
|
72 |
+
<td>10.8</td>
|
73 |
+
<td>26.4</td>
|
74 |
+
<td>17.4</td>
|
75 |
+
<td>36.7</td>
|
76 |
+
<td>13.9</td>
|
77 |
+
<td>27.3</td>
|
78 |
+
</tr>
|
79 |
+
<tr>
|
80 |
+
<td>6</td>
|
81 |
+
<td>7.1</td>
|
82 |
+
<td>19.8</td>
|
83 |
+
<td>6.7</td>
|
84 |
+
<td>19.2</td>
|
85 |
+
<td>9.6</td>
|
86 |
+
<td>23.7</td>
|
87 |
+
<td>8.7</td>
|
88 |
+
<td>18.4</td>
|
89 |
+
</tr>
|
90 |
+
<tr>
|
91 |
+
<td>8</td>
|
92 |
+
<td>5.8</td>
|
93 |
+
<td>16.6</td>
|
94 |
+
<td>5.5</td>
|
95 |
+
<td>16.3</td>
|
96 |
+
<td>5.8</td>
|
97 |
+
<td>15.9</td>
|
98 |
+
<td>4.8</td>
|
99 |
+
<td>12.4</td>
|
100 |
+
</tr>
|
101 |
+
<tr>
|
102 |
+
<td>10</td>
|
103 |
+
<td>5.3</td>
|
104 |
+
<td>15.3</td>
|
105 |
+
<td>5.1</td>
|
106 |
+
<td>15.1</td>
|
107 |
+
<td>4.5</td>
|
108 |
+
<td>12.6</td>
|
109 |
+
<td>4.0</td>
|
110 |
+
<td>9.5</td>
|
111 |
+
</tr>
|
112 |
+
<tr>
|
113 |
+
<td>12</td>
|
114 |
+
<td>5.1</td>
|
115 |
+
<td>14.8</td>
|
116 |
+
<td>4.8</td>
|
117 |
+
<td>14.7</td>
|
118 |
+
<td>4.3</td>
|
119 |
+
<td>12.2</td>
|
120 |
+
<td>3.6</td>
|
121 |
+
<td>8.8</td>
|
122 |
+
</tr>
|
123 |
+
</tbody>
|
124 |
+
</table>
|