MayBashendy commited on
Commit
a04c8cb
·
verified ·
1 Parent(s): dde8d12

Training in progress, step 500

Browse files
Files changed (4) hide show
  1. README.md +322 -0
  2. config.json +32 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,322 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: aubmindlab/bert-base-arabertv02
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: ArabicNewSplits7_FineTuningAraBERT_run1_AugV5_k13_task7_organization
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # ArabicNewSplits7_FineTuningAraBERT_run1_AugV5_k13_task7_organization
15
+
16
+ This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.5192
19
+ - Qwk: 0.4774
20
+ - Mse: 0.5192
21
+ - Rmse: 0.7206
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 100
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
51
+ |:-------------:|:-------:|:----:|:---------------:|:-------:|:------:|:------:|
52
+ | No log | 0.0588 | 2 | 2.5594 | -0.0449 | 2.5594 | 1.5998 |
53
+ | No log | 0.1176 | 4 | 1.4126 | 0.0745 | 1.4126 | 1.1885 |
54
+ | No log | 0.1765 | 6 | 1.0381 | -0.0970 | 1.0381 | 1.0189 |
55
+ | No log | 0.2353 | 8 | 0.8738 | -0.0025 | 0.8738 | 0.9348 |
56
+ | No log | 0.2941 | 10 | 0.7635 | 0.0444 | 0.7635 | 0.8738 |
57
+ | No log | 0.3529 | 12 | 0.7323 | 0.1660 | 0.7323 | 0.8558 |
58
+ | No log | 0.4118 | 14 | 0.7389 | 0.2085 | 0.7389 | 0.8596 |
59
+ | No log | 0.4706 | 16 | 0.6634 | 0.2374 | 0.6634 | 0.8145 |
60
+ | No log | 0.5294 | 18 | 0.8164 | 0.2672 | 0.8164 | 0.9035 |
61
+ | No log | 0.5882 | 20 | 0.9101 | 0.1521 | 0.9101 | 0.9540 |
62
+ | No log | 0.6471 | 22 | 0.7448 | 0.2642 | 0.7448 | 0.8630 |
63
+ | No log | 0.7059 | 24 | 0.6353 | 0.2740 | 0.6353 | 0.7970 |
64
+ | No log | 0.7647 | 26 | 0.7678 | 0.2227 | 0.7678 | 0.8763 |
65
+ | No log | 0.8235 | 28 | 1.0758 | 0.0713 | 1.0758 | 1.0372 |
66
+ | No log | 0.8824 | 30 | 1.1740 | 0.0263 | 1.1740 | 1.0835 |
67
+ | No log | 0.9412 | 32 | 0.9041 | 0.1822 | 0.9041 | 0.9509 |
68
+ | No log | 1.0 | 34 | 0.8479 | 0.1373 | 0.8479 | 0.9208 |
69
+ | No log | 1.0588 | 36 | 0.9137 | 0.1501 | 0.9137 | 0.9559 |
70
+ | No log | 1.1176 | 38 | 1.2658 | 0.0688 | 1.2658 | 1.1251 |
71
+ | No log | 1.1765 | 40 | 1.3941 | -0.0102 | 1.3941 | 1.1807 |
72
+ | No log | 1.2353 | 42 | 1.0966 | 0.1599 | 1.0966 | 1.0472 |
73
+ | No log | 1.2941 | 44 | 0.7795 | 0.1416 | 0.7795 | 0.8829 |
74
+ | No log | 1.3529 | 46 | 0.7401 | 0.2319 | 0.7401 | 0.8603 |
75
+ | No log | 1.4118 | 48 | 0.7150 | 0.3197 | 0.7150 | 0.8456 |
76
+ | No log | 1.4706 | 50 | 0.7576 | 0.1815 | 0.7576 | 0.8704 |
77
+ | No log | 1.5294 | 52 | 0.7473 | 0.2227 | 0.7473 | 0.8645 |
78
+ | No log | 1.5882 | 54 | 0.7126 | 0.2857 | 0.7126 | 0.8442 |
79
+ | No log | 1.6471 | 56 | 0.7179 | 0.2857 | 0.7179 | 0.8473 |
80
+ | No log | 1.7059 | 58 | 0.7864 | 0.2012 | 0.7864 | 0.8868 |
81
+ | No log | 1.7647 | 60 | 0.9939 | 0.2363 | 0.9939 | 0.9970 |
82
+ | No log | 1.8235 | 62 | 1.0253 | 0.1827 | 1.0253 | 1.0126 |
83
+ | No log | 1.8824 | 64 | 0.7689 | 0.3519 | 0.7689 | 0.8769 |
84
+ | No log | 1.9412 | 66 | 0.6555 | 0.4308 | 0.6555 | 0.8097 |
85
+ | No log | 2.0 | 68 | 0.6892 | 0.4283 | 0.6892 | 0.8302 |
86
+ | No log | 2.0588 | 70 | 0.6777 | 0.4234 | 0.6777 | 0.8232 |
87
+ | No log | 2.1176 | 72 | 0.5715 | 0.4265 | 0.5715 | 0.7560 |
88
+ | No log | 2.1765 | 74 | 0.7043 | 0.4404 | 0.7043 | 0.8392 |
89
+ | No log | 2.2353 | 76 | 0.7034 | 0.4328 | 0.7034 | 0.8387 |
90
+ | No log | 2.2941 | 78 | 0.5727 | 0.4808 | 0.5727 | 0.7568 |
91
+ | No log | 2.3529 | 80 | 0.6822 | 0.2853 | 0.6822 | 0.8259 |
92
+ | No log | 2.4118 | 82 | 0.6656 | 0.2886 | 0.6656 | 0.8158 |
93
+ | No log | 2.4706 | 84 | 0.5700 | 0.4019 | 0.5700 | 0.7550 |
94
+ | No log | 2.5294 | 86 | 0.6587 | 0.4576 | 0.6587 | 0.8116 |
95
+ | No log | 2.5882 | 88 | 0.7495 | 0.3822 | 0.7495 | 0.8658 |
96
+ | No log | 2.6471 | 90 | 0.6609 | 0.4576 | 0.6609 | 0.8130 |
97
+ | No log | 2.7059 | 92 | 0.5779 | 0.4701 | 0.5779 | 0.7602 |
98
+ | No log | 2.7647 | 94 | 0.6975 | 0.3402 | 0.6975 | 0.8351 |
99
+ | No log | 2.8235 | 96 | 0.7107 | 0.3941 | 0.7107 | 0.8430 |
100
+ | No log | 2.8824 | 98 | 0.6058 | 0.4972 | 0.6058 | 0.7784 |
101
+ | No log | 2.9412 | 100 | 0.6761 | 0.4409 | 0.6761 | 0.8222 |
102
+ | No log | 3.0 | 102 | 0.8333 | 0.4255 | 0.8333 | 0.9128 |
103
+ | No log | 3.0588 | 104 | 0.7380 | 0.4409 | 0.7380 | 0.8591 |
104
+ | No log | 3.1176 | 106 | 0.6812 | 0.4167 | 0.6812 | 0.8253 |
105
+ | No log | 3.1765 | 108 | 0.6351 | 0.4617 | 0.6351 | 0.7969 |
106
+ | No log | 3.2353 | 110 | 0.6972 | 0.5200 | 0.6972 | 0.8350 |
107
+ | No log | 3.2941 | 112 | 0.8106 | 0.4724 | 0.8106 | 0.9003 |
108
+ | No log | 3.3529 | 114 | 0.8025 | 0.4596 | 0.8025 | 0.8958 |
109
+ | No log | 3.4118 | 116 | 0.7718 | 0.3760 | 0.7718 | 0.8785 |
110
+ | No log | 3.4706 | 118 | 0.7436 | 0.3710 | 0.7436 | 0.8623 |
111
+ | No log | 3.5294 | 120 | 0.7155 | 0.4036 | 0.7155 | 0.8458 |
112
+ | No log | 3.5882 | 122 | 0.6147 | 0.4516 | 0.6147 | 0.7840 |
113
+ | No log | 3.6471 | 124 | 0.6805 | 0.4373 | 0.6805 | 0.8249 |
114
+ | No log | 3.7059 | 126 | 0.6564 | 0.4373 | 0.6564 | 0.8102 |
115
+ | No log | 3.7647 | 128 | 0.6117 | 0.4398 | 0.6117 | 0.7821 |
116
+ | No log | 3.8235 | 130 | 0.7010 | 0.4335 | 0.7010 | 0.8373 |
117
+ | No log | 3.8824 | 132 | 0.7199 | 0.3976 | 0.7199 | 0.8485 |
118
+ | No log | 3.9412 | 134 | 0.6022 | 0.4753 | 0.6022 | 0.7760 |
119
+ | No log | 4.0 | 136 | 0.6192 | 0.4783 | 0.6192 | 0.7869 |
120
+ | No log | 4.0588 | 138 | 0.6277 | 0.4800 | 0.6277 | 0.7923 |
121
+ | No log | 4.1176 | 140 | 0.6009 | 0.4824 | 0.6009 | 0.7752 |
122
+ | No log | 4.1765 | 142 | 0.6273 | 0.4315 | 0.6273 | 0.7920 |
123
+ | No log | 4.2353 | 144 | 0.6565 | 0.5235 | 0.6565 | 0.8103 |
124
+ | No log | 4.2941 | 146 | 0.6621 | 0.5355 | 0.6621 | 0.8137 |
125
+ | No log | 4.3529 | 148 | 0.6602 | 0.5103 | 0.6602 | 0.8125 |
126
+ | No log | 4.4118 | 150 | 0.6367 | 0.5070 | 0.6367 | 0.7980 |
127
+ | No log | 4.4706 | 152 | 0.5829 | 0.4806 | 0.5829 | 0.7635 |
128
+ | No log | 4.5294 | 154 | 0.5611 | 0.4444 | 0.5611 | 0.7491 |
129
+ | No log | 4.5882 | 156 | 0.5572 | 0.4681 | 0.5572 | 0.7465 |
130
+ | No log | 4.6471 | 158 | 0.5585 | 0.4419 | 0.5585 | 0.7473 |
131
+ | No log | 4.7059 | 160 | 0.5700 | 0.4206 | 0.5700 | 0.7550 |
132
+ | No log | 4.7647 | 162 | 0.5814 | 0.4206 | 0.5814 | 0.7625 |
133
+ | No log | 4.8235 | 164 | 0.5931 | 0.4459 | 0.5931 | 0.7701 |
134
+ | No log | 4.8824 | 166 | 0.6112 | 0.4100 | 0.6112 | 0.7818 |
135
+ | No log | 4.9412 | 168 | 0.6896 | 0.4582 | 0.6896 | 0.8304 |
136
+ | No log | 5.0 | 170 | 0.6729 | 0.4602 | 0.6729 | 0.8203 |
137
+ | No log | 5.0588 | 172 | 0.6247 | 0.4721 | 0.6247 | 0.7903 |
138
+ | No log | 5.1176 | 174 | 0.6366 | 0.4721 | 0.6366 | 0.7979 |
139
+ | No log | 5.1765 | 176 | 0.6104 | 0.4724 | 0.6104 | 0.7813 |
140
+ | No log | 5.2353 | 178 | 0.5879 | 0.4493 | 0.5879 | 0.7667 |
141
+ | No log | 5.2941 | 180 | 0.5843 | 0.4493 | 0.5843 | 0.7644 |
142
+ | No log | 5.3529 | 182 | 0.5684 | 0.4828 | 0.5684 | 0.7539 |
143
+ | No log | 5.4118 | 184 | 0.5708 | 0.4234 | 0.5708 | 0.7555 |
144
+ | No log | 5.4706 | 186 | 0.5672 | 0.4234 | 0.5672 | 0.7531 |
145
+ | No log | 5.5294 | 188 | 0.5978 | 0.3918 | 0.5978 | 0.7732 |
146
+ | No log | 5.5882 | 190 | 0.5818 | 0.4190 | 0.5818 | 0.7628 |
147
+ | No log | 5.6471 | 192 | 0.6076 | 0.4190 | 0.6076 | 0.7795 |
148
+ | No log | 5.7059 | 194 | 0.5857 | 0.4081 | 0.5857 | 0.7653 |
149
+ | No log | 5.7647 | 196 | 0.5654 | 0.5725 | 0.5654 | 0.7519 |
150
+ | No log | 5.8235 | 198 | 0.6279 | 0.5471 | 0.6279 | 0.7924 |
151
+ | No log | 5.8824 | 200 | 0.6149 | 0.5471 | 0.6149 | 0.7841 |
152
+ | No log | 5.9412 | 202 | 0.5667 | 0.5434 | 0.5667 | 0.7528 |
153
+ | No log | 6.0 | 204 | 0.7536 | 0.4933 | 0.7536 | 0.8681 |
154
+ | No log | 6.0588 | 206 | 0.8128 | 0.4275 | 0.8128 | 0.9016 |
155
+ | No log | 6.1176 | 208 | 0.6205 | 0.4007 | 0.6205 | 0.7877 |
156
+ | No log | 6.1765 | 210 | 0.5864 | 0.5246 | 0.5864 | 0.7658 |
157
+ | No log | 6.2353 | 212 | 0.6043 | 0.3315 | 0.6043 | 0.7774 |
158
+ | No log | 6.2941 | 214 | 0.5710 | 0.5114 | 0.5710 | 0.7556 |
159
+ | No log | 6.3529 | 216 | 0.5511 | 0.4493 | 0.5511 | 0.7424 |
160
+ | No log | 6.4118 | 218 | 0.5241 | 0.5488 | 0.5241 | 0.7239 |
161
+ | No log | 6.4706 | 220 | 0.5634 | 0.5621 | 0.5634 | 0.7506 |
162
+ | No log | 6.5294 | 222 | 0.5582 | 0.5268 | 0.5582 | 0.7471 |
163
+ | No log | 6.5882 | 224 | 0.5228 | 0.5604 | 0.5228 | 0.7230 |
164
+ | No log | 6.6471 | 226 | 0.5379 | 0.5619 | 0.5379 | 0.7334 |
165
+ | No log | 6.7059 | 228 | 0.5784 | 0.5317 | 0.5784 | 0.7605 |
166
+ | No log | 6.7647 | 230 | 0.5748 | 0.5320 | 0.5748 | 0.7582 |
167
+ | No log | 6.8235 | 232 | 0.5838 | 0.4740 | 0.5838 | 0.7641 |
168
+ | No log | 6.8824 | 234 | 0.5896 | 0.4542 | 0.5896 | 0.7679 |
169
+ | No log | 6.9412 | 236 | 0.5545 | 0.5517 | 0.5545 | 0.7447 |
170
+ | No log | 7.0 | 238 | 0.6215 | 0.4290 | 0.6215 | 0.7883 |
171
+ | No log | 7.0588 | 240 | 0.7020 | 0.4297 | 0.7020 | 0.8379 |
172
+ | No log | 7.1176 | 242 | 0.6570 | 0.4396 | 0.6570 | 0.8106 |
173
+ | No log | 7.1765 | 244 | 0.6034 | 0.4789 | 0.6034 | 0.7768 |
174
+ | No log | 7.2353 | 246 | 0.5493 | 0.4984 | 0.5493 | 0.7411 |
175
+ | No log | 7.2941 | 248 | 0.5618 | 0.5104 | 0.5618 | 0.7495 |
176
+ | No log | 7.3529 | 250 | 0.5559 | 0.5159 | 0.5559 | 0.7456 |
177
+ | No log | 7.4118 | 252 | 0.6408 | 0.4616 | 0.6408 | 0.8005 |
178
+ | No log | 7.4706 | 254 | 0.7428 | 0.4051 | 0.7428 | 0.8619 |
179
+ | No log | 7.5294 | 256 | 0.6728 | 0.4670 | 0.6728 | 0.8203 |
180
+ | No log | 7.5882 | 258 | 0.5854 | 0.5517 | 0.5854 | 0.7651 |
181
+ | No log | 7.6471 | 260 | 0.6560 | 0.4165 | 0.6560 | 0.8099 |
182
+ | No log | 7.7059 | 262 | 0.6652 | 0.4218 | 0.6652 | 0.8156 |
183
+ | No log | 7.7647 | 264 | 0.6060 | 0.4948 | 0.6060 | 0.7785 |
184
+ | No log | 7.8235 | 266 | 0.6666 | 0.4923 | 0.6666 | 0.8164 |
185
+ | No log | 7.8824 | 268 | 0.7125 | 0.4654 | 0.7125 | 0.8441 |
186
+ | No log | 7.9412 | 270 | 0.6442 | 0.4906 | 0.6442 | 0.8026 |
187
+ | No log | 8.0 | 272 | 0.5941 | 0.5304 | 0.5941 | 0.7708 |
188
+ | No log | 8.0588 | 274 | 0.5871 | 0.5647 | 0.5871 | 0.7662 |
189
+ | No log | 8.1176 | 276 | 0.5849 | 0.5101 | 0.5849 | 0.7648 |
190
+ | No log | 8.1765 | 278 | 0.6013 | 0.4599 | 0.6013 | 0.7755 |
191
+ | No log | 8.2353 | 280 | 0.6155 | 0.4599 | 0.6155 | 0.7845 |
192
+ | No log | 8.2941 | 282 | 0.5934 | 0.4757 | 0.5934 | 0.7704 |
193
+ | No log | 8.3529 | 284 | 0.6061 | 0.4769 | 0.6061 | 0.7785 |
194
+ | No log | 8.4118 | 286 | 0.6114 | 0.4769 | 0.6114 | 0.7819 |
195
+ | No log | 8.4706 | 288 | 0.6171 | 0.4769 | 0.6171 | 0.7856 |
196
+ | No log | 8.5294 | 290 | 0.6024 | 0.5056 | 0.6024 | 0.7761 |
197
+ | No log | 8.5882 | 292 | 0.5979 | 0.5056 | 0.5979 | 0.7733 |
198
+ | No log | 8.6471 | 294 | 0.6127 | 0.5016 | 0.6127 | 0.7828 |
199
+ | No log | 8.7059 | 296 | 0.6414 | 0.4782 | 0.6414 | 0.8009 |
200
+ | No log | 8.7647 | 298 | 0.6262 | 0.5254 | 0.6262 | 0.7913 |
201
+ | No log | 8.8235 | 300 | 0.6069 | 0.4806 | 0.6069 | 0.7791 |
202
+ | No log | 8.8824 | 302 | 0.6074 | 0.4710 | 0.6074 | 0.7794 |
203
+ | No log | 8.9412 | 304 | 0.5739 | 0.4883 | 0.5739 | 0.7576 |
204
+ | No log | 9.0 | 306 | 0.5577 | 0.5437 | 0.5577 | 0.7468 |
205
+ | No log | 9.0588 | 308 | 0.5678 | 0.5086 | 0.5678 | 0.7535 |
206
+ | No log | 9.1176 | 310 | 0.5444 | 0.5703 | 0.5444 | 0.7378 |
207
+ | No log | 9.1765 | 312 | 0.5494 | 0.5009 | 0.5494 | 0.7412 |
208
+ | No log | 9.2353 | 314 | 0.5546 | 0.5352 | 0.5546 | 0.7447 |
209
+ | No log | 9.2941 | 316 | 0.5754 | 0.4729 | 0.5754 | 0.7586 |
210
+ | No log | 9.3529 | 318 | 0.5640 | 0.4789 | 0.5640 | 0.7510 |
211
+ | No log | 9.4118 | 320 | 0.5351 | 0.5751 | 0.5351 | 0.7315 |
212
+ | No log | 9.4706 | 322 | 0.5284 | 0.5768 | 0.5284 | 0.7269 |
213
+ | No log | 9.5294 | 324 | 0.5428 | 0.5831 | 0.5428 | 0.7368 |
214
+ | No log | 9.5882 | 326 | 0.5303 | 0.5492 | 0.5303 | 0.7282 |
215
+ | No log | 9.6471 | 328 | 0.5565 | 0.5442 | 0.5565 | 0.7460 |
216
+ | No log | 9.7059 | 330 | 0.5695 | 0.5378 | 0.5695 | 0.7547 |
217
+ | No log | 9.7647 | 332 | 0.5468 | 0.5781 | 0.5468 | 0.7394 |
218
+ | No log | 9.8235 | 334 | 0.5475 | 0.6018 | 0.5475 | 0.7399 |
219
+ | No log | 9.8824 | 336 | 0.6630 | 0.5107 | 0.6630 | 0.8142 |
220
+ | No log | 9.9412 | 338 | 0.6480 | 0.5042 | 0.6480 | 0.8050 |
221
+ | No log | 10.0 | 340 | 0.5901 | 0.5206 | 0.5901 | 0.7682 |
222
+ | No log | 10.0588 | 342 | 0.5408 | 0.5135 | 0.5408 | 0.7354 |
223
+ | No log | 10.1176 | 344 | 0.5698 | 0.5710 | 0.5698 | 0.7548 |
224
+ | No log | 10.1765 | 346 | 0.5555 | 0.5368 | 0.5555 | 0.7453 |
225
+ | No log | 10.2353 | 348 | 0.5547 | 0.5501 | 0.5547 | 0.7448 |
226
+ | No log | 10.2941 | 350 | 0.5862 | 0.4845 | 0.5862 | 0.7657 |
227
+ | No log | 10.3529 | 352 | 0.5793 | 0.4929 | 0.5793 | 0.7611 |
228
+ | No log | 10.4118 | 354 | 0.5499 | 0.4953 | 0.5499 | 0.7415 |
229
+ | No log | 10.4706 | 356 | 0.5578 | 0.5368 | 0.5578 | 0.7468 |
230
+ | No log | 10.5294 | 358 | 0.5847 | 0.5538 | 0.5847 | 0.7647 |
231
+ | No log | 10.5882 | 360 | 0.6027 | 0.5471 | 0.6027 | 0.7764 |
232
+ | No log | 10.6471 | 362 | 0.5754 | 0.5120 | 0.5754 | 0.7586 |
233
+ | No log | 10.7059 | 364 | 0.5464 | 0.5076 | 0.5464 | 0.7392 |
234
+ | No log | 10.7647 | 366 | 0.5678 | 0.4684 | 0.5678 | 0.7536 |
235
+ | No log | 10.8235 | 368 | 0.5458 | 0.5307 | 0.5458 | 0.7388 |
236
+ | No log | 10.8824 | 370 | 0.5341 | 0.5286 | 0.5341 | 0.7308 |
237
+ | No log | 10.9412 | 372 | 0.5634 | 0.5190 | 0.5634 | 0.7506 |
238
+ | No log | 11.0 | 374 | 0.5429 | 0.4883 | 0.5429 | 0.7368 |
239
+ | No log | 11.0588 | 376 | 0.5146 | 0.4768 | 0.5146 | 0.7173 |
240
+ | No log | 11.1176 | 378 | 0.5109 | 0.5076 | 0.5109 | 0.7148 |
241
+ | No log | 11.1765 | 380 | 0.5267 | 0.4795 | 0.5267 | 0.7258 |
242
+ | No log | 11.2353 | 382 | 0.5207 | 0.4768 | 0.5207 | 0.7216 |
243
+ | No log | 11.2941 | 384 | 0.5235 | 0.4768 | 0.5235 | 0.7235 |
244
+ | No log | 11.3529 | 386 | 0.5249 | 0.5326 | 0.5249 | 0.7245 |
245
+ | No log | 11.4118 | 388 | 0.5177 | 0.5022 | 0.5177 | 0.7195 |
246
+ | No log | 11.4706 | 390 | 0.5226 | 0.5326 | 0.5226 | 0.7229 |
247
+ | No log | 11.5294 | 392 | 0.5491 | 0.4795 | 0.5491 | 0.7410 |
248
+ | No log | 11.5882 | 394 | 0.5526 | 0.5017 | 0.5526 | 0.7433 |
249
+ | No log | 11.6471 | 396 | 0.5257 | 0.4774 | 0.5257 | 0.7251 |
250
+ | No log | 11.7059 | 398 | 0.4904 | 0.5056 | 0.4904 | 0.7003 |
251
+ | No log | 11.7647 | 400 | 0.4706 | 0.5800 | 0.4706 | 0.6860 |
252
+ | No log | 11.8235 | 402 | 0.4673 | 0.5326 | 0.4673 | 0.6836 |
253
+ | No log | 11.8824 | 404 | 0.4952 | 0.4774 | 0.4952 | 0.7037 |
254
+ | No log | 11.9412 | 406 | 0.5513 | 0.4597 | 0.5513 | 0.7425 |
255
+ | No log | 12.0 | 408 | 0.5970 | 0.4597 | 0.5970 | 0.7727 |
256
+ | No log | 12.0588 | 410 | 0.5809 | 0.5017 | 0.5809 | 0.7621 |
257
+ | No log | 12.1176 | 412 | 0.5211 | 0.5195 | 0.5211 | 0.7219 |
258
+ | No log | 12.1765 | 414 | 0.5010 | 0.5550 | 0.5010 | 0.7078 |
259
+ | No log | 12.2353 | 416 | 0.5514 | 0.4517 | 0.5514 | 0.7426 |
260
+ | No log | 12.2941 | 418 | 0.5688 | 0.3902 | 0.5688 | 0.7542 |
261
+ | No log | 12.3529 | 420 | 0.5322 | 0.4338 | 0.5322 | 0.7295 |
262
+ | No log | 12.4118 | 422 | 0.5348 | 0.5131 | 0.5348 | 0.7313 |
263
+ | No log | 12.4706 | 424 | 0.5742 | 0.5017 | 0.5742 | 0.7578 |
264
+ | No log | 12.5294 | 426 | 0.5624 | 0.5017 | 0.5624 | 0.7499 |
265
+ | No log | 12.5882 | 428 | 0.5152 | 0.5195 | 0.5152 | 0.7178 |
266
+ | No log | 12.6471 | 430 | 0.5137 | 0.5357 | 0.5137 | 0.7167 |
267
+ | No log | 12.7059 | 432 | 0.5624 | 0.5538 | 0.5624 | 0.7499 |
268
+ | No log | 12.7647 | 434 | 0.5513 | 0.5738 | 0.5513 | 0.7425 |
269
+ | No log | 12.8235 | 436 | 0.4995 | 0.5722 | 0.4995 | 0.7067 |
270
+ | No log | 12.8824 | 438 | 0.4884 | 0.5753 | 0.4884 | 0.6989 |
271
+ | No log | 12.9412 | 440 | 0.4915 | 0.5609 | 0.4915 | 0.7010 |
272
+ | No log | 13.0 | 442 | 0.5176 | 0.5016 | 0.5176 | 0.7194 |
273
+ | No log | 13.0588 | 444 | 0.5070 | 0.5289 | 0.5070 | 0.7121 |
274
+ | No log | 13.1176 | 446 | 0.4876 | 0.5567 | 0.4876 | 0.6983 |
275
+ | No log | 13.1765 | 448 | 0.4970 | 0.5475 | 0.4970 | 0.7050 |
276
+ | No log | 13.2353 | 450 | 0.4982 | 0.4991 | 0.4982 | 0.7058 |
277
+ | No log | 13.2941 | 452 | 0.4915 | 0.5195 | 0.4915 | 0.7011 |
278
+ | No log | 13.3529 | 454 | 0.4967 | 0.5125 | 0.4967 | 0.7047 |
279
+ | No log | 13.4118 | 456 | 0.5425 | 0.5457 | 0.5425 | 0.7366 |
280
+ | No log | 13.4706 | 458 | 0.5632 | 0.5269 | 0.5632 | 0.7505 |
281
+ | No log | 13.5294 | 460 | 0.5411 | 0.5368 | 0.5411 | 0.7356 |
282
+ | No log | 13.5882 | 462 | 0.5304 | 0.4885 | 0.5304 | 0.7283 |
283
+ | No log | 13.6471 | 464 | 0.5755 | 0.4774 | 0.5755 | 0.7586 |
284
+ | No log | 13.7059 | 466 | 0.5916 | 0.4774 | 0.5916 | 0.7692 |
285
+ | No log | 13.7647 | 468 | 0.5605 | 0.4774 | 0.5605 | 0.7487 |
286
+ | No log | 13.8235 | 470 | 0.5406 | 0.5379 | 0.5406 | 0.7352 |
287
+ | No log | 13.8824 | 472 | 0.5376 | 0.4885 | 0.5376 | 0.7332 |
288
+ | No log | 13.9412 | 474 | 0.5416 | 0.5625 | 0.5416 | 0.7359 |
289
+ | No log | 14.0 | 476 | 0.5454 | 0.5379 | 0.5454 | 0.7385 |
290
+ | No log | 14.0588 | 478 | 0.5529 | 0.5289 | 0.5529 | 0.7436 |
291
+ | No log | 14.1176 | 480 | 0.5407 | 0.5036 | 0.5407 | 0.7353 |
292
+ | No log | 14.1765 | 482 | 0.5208 | 0.5326 | 0.5208 | 0.7216 |
293
+ | No log | 14.2353 | 484 | 0.5231 | 0.4701 | 0.5231 | 0.7233 |
294
+ | No log | 14.2941 | 486 | 0.5296 | 0.4768 | 0.5296 | 0.7277 |
295
+ | No log | 14.3529 | 488 | 0.5481 | 0.4614 | 0.5481 | 0.7403 |
296
+ | No log | 14.4118 | 490 | 0.5702 | 0.4774 | 0.5702 | 0.7551 |
297
+ | No log | 14.4706 | 492 | 0.5599 | 0.4774 | 0.5599 | 0.7482 |
298
+ | No log | 14.5294 | 494 | 0.5421 | 0.5307 | 0.5421 | 0.7362 |
299
+ | No log | 14.5882 | 496 | 0.5339 | 0.4885 | 0.5339 | 0.7307 |
300
+ | No log | 14.6471 | 498 | 0.5454 | 0.5383 | 0.5454 | 0.7385 |
301
+ | 0.2859 | 14.7059 | 500 | 0.5414 | 0.5383 | 0.5414 | 0.7358 |
302
+ | 0.2859 | 14.7647 | 502 | 0.5341 | 0.5301 | 0.5341 | 0.7309 |
303
+ | 0.2859 | 14.8235 | 504 | 0.5263 | 0.5549 | 0.5263 | 0.7255 |
304
+ | 0.2859 | 14.8824 | 506 | 0.5608 | 0.4964 | 0.5608 | 0.7488 |
305
+ | 0.2859 | 14.9412 | 508 | 0.5601 | 0.4724 | 0.5601 | 0.7484 |
306
+ | 0.2859 | 15.0 | 510 | 0.5358 | 0.5692 | 0.5358 | 0.7320 |
307
+ | 0.2859 | 15.0588 | 512 | 0.5413 | 0.5301 | 0.5413 | 0.7357 |
308
+ | 0.2859 | 15.1176 | 514 | 0.5596 | 0.5592 | 0.5596 | 0.7481 |
309
+ | 0.2859 | 15.1765 | 516 | 0.5735 | 0.5414 | 0.5735 | 0.7573 |
310
+ | 0.2859 | 15.2353 | 518 | 0.5292 | 0.5026 | 0.5292 | 0.7275 |
311
+ | 0.2859 | 15.2941 | 520 | 0.5117 | 0.5056 | 0.5117 | 0.7153 |
312
+ | 0.2859 | 15.3529 | 522 | 0.5380 | 0.4867 | 0.5380 | 0.7335 |
313
+ | 0.2859 | 15.4118 | 524 | 0.5408 | 0.4774 | 0.5408 | 0.7354 |
314
+ | 0.2859 | 15.4706 | 526 | 0.5192 | 0.4774 | 0.5192 | 0.7206 |
315
+
316
+
317
+ ### Framework versions
318
+
319
+ - Transformers 4.44.2
320
+ - Pytorch 2.4.0+cu118
321
+ - Datasets 2.21.0
322
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "aubmindlab/bert-base-arabertv02",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "problem_type": "regression",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 64000
32
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84167813add45edfcaac5416ee95b66cd5a7dffd0675d437aa062ab47dd57e87
3
+ size 540799996
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec2854e67e003c0c31c8948547bd0980c27c2fa41f013503053b0ebff0c553ac
3
+ size 5240