MayBashendy commited on
Commit
e01f260
·
verified ·
1 Parent(s): bfce8f9

Training in progress, step 500

Browse files
Files changed (4) hide show
  1. README.md +343 -0
  2. config.json +32 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,343 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: aubmindlab/bert-base-arabertv02
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: ArabicNewSplits7_FineTuningAraBERT_run1_AugV5_k18_task7_organization
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # ArabicNewSplits7_FineTuningAraBERT_run1_AugV5_k18_task7_organization
15
+
16
+ This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.5669
19
+ - Qwk: 0.4747
20
+ - Mse: 0.5669
21
+ - Rmse: 0.7529
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 100
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
51
+ |:-------------:|:-------:|:----:|:---------------:|:-------:|:------:|:------:|
52
+ | No log | 0.0444 | 2 | 2.6703 | -0.0262 | 2.6703 | 1.6341 |
53
+ | No log | 0.0889 | 4 | 1.4414 | 0.0511 | 1.4414 | 1.2006 |
54
+ | No log | 0.1333 | 6 | 1.2104 | -0.1993 | 1.2104 | 1.1002 |
55
+ | No log | 0.1778 | 8 | 1.0885 | -0.1095 | 1.0885 | 1.0433 |
56
+ | No log | 0.2222 | 10 | 1.1405 | -0.2088 | 1.1405 | 1.0679 |
57
+ | No log | 0.2667 | 12 | 1.3054 | -0.2026 | 1.3054 | 1.1425 |
58
+ | No log | 0.3111 | 14 | 1.1953 | -0.2191 | 1.1953 | 1.0933 |
59
+ | No log | 0.3556 | 16 | 0.9715 | 0.0469 | 0.9715 | 0.9856 |
60
+ | No log | 0.4 | 18 | 0.8487 | 0.1184 | 0.8487 | 0.9212 |
61
+ | No log | 0.4444 | 20 | 0.7605 | 0.1139 | 0.7605 | 0.8720 |
62
+ | No log | 0.4889 | 22 | 0.7263 | 0.1863 | 0.7263 | 0.8522 |
63
+ | No log | 0.5333 | 24 | 0.7119 | 0.1863 | 0.7119 | 0.8437 |
64
+ | No log | 0.5778 | 26 | 0.7245 | 0.2206 | 0.7245 | 0.8512 |
65
+ | No log | 0.6222 | 28 | 0.7335 | 0.0846 | 0.7335 | 0.8565 |
66
+ | No log | 0.6667 | 30 | 0.7293 | 0.0481 | 0.7293 | 0.8540 |
67
+ | No log | 0.7111 | 32 | 0.7412 | 0.0 | 0.7412 | 0.8609 |
68
+ | No log | 0.7556 | 34 | 0.7349 | 0.0840 | 0.7349 | 0.8572 |
69
+ | No log | 0.8 | 36 | 0.7266 | 0.1617 | 0.7266 | 0.8524 |
70
+ | No log | 0.8444 | 38 | 0.7234 | 0.2270 | 0.7234 | 0.8506 |
71
+ | No log | 0.8889 | 40 | 0.7434 | 0.2206 | 0.7434 | 0.8622 |
72
+ | No log | 0.9333 | 42 | 0.7752 | 0.1807 | 0.7752 | 0.8804 |
73
+ | No log | 0.9778 | 44 | 0.7901 | 0.2046 | 0.7901 | 0.8889 |
74
+ | No log | 1.0222 | 46 | 0.8162 | 0.0851 | 0.8162 | 0.9034 |
75
+ | No log | 1.0667 | 48 | 0.8215 | 0.0053 | 0.8215 | 0.9064 |
76
+ | No log | 1.1111 | 50 | 0.8064 | 0.0509 | 0.8064 | 0.8980 |
77
+ | No log | 1.1556 | 52 | 0.7774 | 0.0053 | 0.7774 | 0.8817 |
78
+ | No log | 1.2 | 54 | 0.7464 | 0.1282 | 0.7464 | 0.8639 |
79
+ | No log | 1.2444 | 56 | 0.7439 | 0.1699 | 0.7439 | 0.8625 |
80
+ | No log | 1.2889 | 58 | 0.7539 | 0.1737 | 0.7539 | 0.8683 |
81
+ | No log | 1.3333 | 60 | 0.8049 | 0.1558 | 0.8049 | 0.8972 |
82
+ | No log | 1.3778 | 62 | 0.8533 | 0.1166 | 0.8533 | 0.9238 |
83
+ | No log | 1.4222 | 64 | 0.8114 | 0.2092 | 0.8114 | 0.9008 |
84
+ | No log | 1.4667 | 66 | 0.7791 | 0.3324 | 0.7791 | 0.8826 |
85
+ | No log | 1.5111 | 68 | 0.8180 | 0.2227 | 0.8180 | 0.9044 |
86
+ | No log | 1.5556 | 70 | 0.8138 | 0.2685 | 0.8138 | 0.9021 |
87
+ | No log | 1.6 | 72 | 0.7776 | 0.2685 | 0.7776 | 0.8818 |
88
+ | No log | 1.6444 | 74 | 0.7592 | 0.2685 | 0.7592 | 0.8713 |
89
+ | No log | 1.6889 | 76 | 0.7596 | 0.2652 | 0.7596 | 0.8716 |
90
+ | No log | 1.7333 | 78 | 0.7489 | 0.2652 | 0.7489 | 0.8654 |
91
+ | No log | 1.7778 | 80 | 0.7588 | 0.3594 | 0.7588 | 0.8711 |
92
+ | No log | 1.8222 | 82 | 0.7486 | 0.3594 | 0.7486 | 0.8652 |
93
+ | No log | 1.8667 | 84 | 0.7252 | 0.3594 | 0.7252 | 0.8516 |
94
+ | No log | 1.9111 | 86 | 0.7007 | 0.2285 | 0.7007 | 0.8371 |
95
+ | No log | 1.9556 | 88 | 0.7318 | 0.3868 | 0.7318 | 0.8554 |
96
+ | No log | 2.0 | 90 | 0.8332 | 0.3819 | 0.8332 | 0.9128 |
97
+ | No log | 2.0444 | 92 | 0.7886 | 0.3894 | 0.7886 | 0.8880 |
98
+ | No log | 2.0889 | 94 | 0.7137 | 0.4052 | 0.7137 | 0.8448 |
99
+ | No log | 2.1333 | 96 | 0.7068 | 0.4052 | 0.7068 | 0.8407 |
100
+ | No log | 2.1778 | 98 | 0.7616 | 0.3894 | 0.7616 | 0.8727 |
101
+ | No log | 2.2222 | 100 | 0.6923 | 0.4437 | 0.6923 | 0.8320 |
102
+ | No log | 2.2667 | 102 | 0.6812 | 0.3713 | 0.6812 | 0.8254 |
103
+ | No log | 2.3111 | 104 | 0.6885 | 0.3452 | 0.6885 | 0.8298 |
104
+ | No log | 2.3556 | 106 | 0.8211 | 0.3891 | 0.8211 | 0.9062 |
105
+ | No log | 2.4 | 108 | 0.9487 | 0.2626 | 0.9487 | 0.9740 |
106
+ | No log | 2.4444 | 110 | 0.8642 | 0.3019 | 0.8642 | 0.9296 |
107
+ | No log | 2.4889 | 112 | 0.7254 | 0.3937 | 0.7254 | 0.8517 |
108
+ | No log | 2.5333 | 114 | 0.7038 | 0.4234 | 0.7038 | 0.8389 |
109
+ | No log | 2.5778 | 116 | 0.8216 | 0.3731 | 0.8216 | 0.9064 |
110
+ | No log | 2.6222 | 118 | 1.0351 | 0.2968 | 1.0351 | 1.0174 |
111
+ | No log | 2.6667 | 120 | 0.9387 | 0.3503 | 0.9387 | 0.9689 |
112
+ | No log | 2.7111 | 122 | 0.9550 | 0.3608 | 0.9550 | 0.9772 |
113
+ | No log | 2.7556 | 124 | 0.8227 | 0.3747 | 0.8227 | 0.9070 |
114
+ | No log | 2.8 | 126 | 0.6298 | 0.4639 | 0.6298 | 0.7936 |
115
+ | No log | 2.8444 | 128 | 0.6946 | 0.2624 | 0.6946 | 0.8334 |
116
+ | No log | 2.8889 | 130 | 0.6680 | 0.3265 | 0.6680 | 0.8173 |
117
+ | No log | 2.9333 | 132 | 0.6431 | 0.4451 | 0.6431 | 0.8019 |
118
+ | No log | 2.9778 | 134 | 0.9337 | 0.3523 | 0.9337 | 0.9663 |
119
+ | No log | 3.0222 | 136 | 1.0354 | 0.3016 | 1.0354 | 1.0175 |
120
+ | No log | 3.0667 | 138 | 0.8585 | 0.3727 | 0.8585 | 0.9266 |
121
+ | No log | 3.1111 | 140 | 0.6917 | 0.4898 | 0.6917 | 0.8317 |
122
+ | No log | 3.1556 | 142 | 0.6502 | 0.4562 | 0.6502 | 0.8063 |
123
+ | No log | 3.2 | 144 | 0.6434 | 0.3836 | 0.6434 | 0.8021 |
124
+ | No log | 3.2444 | 146 | 0.6139 | 0.4222 | 0.6139 | 0.7835 |
125
+ | No log | 3.2889 | 148 | 0.6491 | 0.4582 | 0.6491 | 0.8057 |
126
+ | No log | 3.3333 | 150 | 0.6651 | 0.4089 | 0.6651 | 0.8155 |
127
+ | No log | 3.3778 | 152 | 0.6548 | 0.3590 | 0.6548 | 0.8092 |
128
+ | No log | 3.4222 | 154 | 0.7770 | 0.4562 | 0.7770 | 0.8815 |
129
+ | No log | 3.4667 | 156 | 0.7765 | 0.4562 | 0.7765 | 0.8812 |
130
+ | No log | 3.5111 | 158 | 0.6529 | 0.3843 | 0.6529 | 0.8080 |
131
+ | No log | 3.5556 | 160 | 0.5936 | 0.3862 | 0.5936 | 0.7704 |
132
+ | No log | 3.6 | 162 | 0.6188 | 0.4205 | 0.6188 | 0.7866 |
133
+ | No log | 3.6444 | 164 | 0.5839 | 0.3915 | 0.5839 | 0.7641 |
134
+ | No log | 3.6889 | 166 | 0.7057 | 0.4089 | 0.7057 | 0.8401 |
135
+ | No log | 3.7333 | 168 | 0.9339 | 0.3868 | 0.9339 | 0.9664 |
136
+ | No log | 3.7778 | 170 | 0.8321 | 0.4217 | 0.8321 | 0.9122 |
137
+ | No log | 3.8222 | 172 | 0.6602 | 0.3891 | 0.6602 | 0.8125 |
138
+ | No log | 3.8667 | 174 | 0.6310 | 0.3990 | 0.6310 | 0.7944 |
139
+ | No log | 3.9111 | 176 | 0.6660 | 0.3817 | 0.6660 | 0.8161 |
140
+ | No log | 3.9556 | 178 | 0.6909 | 0.4294 | 0.6909 | 0.8312 |
141
+ | No log | 4.0 | 180 | 0.6910 | 0.4190 | 0.6910 | 0.8313 |
142
+ | No log | 4.0444 | 182 | 0.7259 | 0.3918 | 0.7259 | 0.8520 |
143
+ | No log | 4.0889 | 184 | 0.7445 | 0.3891 | 0.7445 | 0.8629 |
144
+ | No log | 4.1333 | 186 | 0.7339 | 0.4190 | 0.7339 | 0.8567 |
145
+ | No log | 4.1778 | 188 | 0.6357 | 0.3408 | 0.6357 | 0.7973 |
146
+ | No log | 4.2222 | 190 | 0.6002 | 0.3703 | 0.6002 | 0.7747 |
147
+ | No log | 4.2667 | 192 | 0.5895 | 0.4847 | 0.5895 | 0.7678 |
148
+ | No log | 4.3111 | 194 | 0.6215 | 0.5034 | 0.6215 | 0.7883 |
149
+ | No log | 4.3556 | 196 | 0.6734 | 0.5063 | 0.6734 | 0.8206 |
150
+ | No log | 4.4 | 198 | 0.7204 | 0.4979 | 0.7204 | 0.8487 |
151
+ | No log | 4.4444 | 200 | 0.6559 | 0.4864 | 0.6559 | 0.8099 |
152
+ | No log | 4.4889 | 202 | 0.6598 | 0.4827 | 0.6598 | 0.8123 |
153
+ | No log | 4.5333 | 204 | 0.6011 | 0.4875 | 0.6011 | 0.7753 |
154
+ | No log | 4.5778 | 206 | 0.5779 | 0.5289 | 0.5779 | 0.7602 |
155
+ | No log | 4.6222 | 208 | 0.6283 | 0.5219 | 0.6283 | 0.7927 |
156
+ | No log | 4.6667 | 210 | 0.6272 | 0.5131 | 0.6272 | 0.7920 |
157
+ | No log | 4.7111 | 212 | 0.5655 | 0.5133 | 0.5655 | 0.7520 |
158
+ | No log | 4.7556 | 214 | 0.5567 | 0.5272 | 0.5567 | 0.7461 |
159
+ | No log | 4.8 | 216 | 0.5274 | 0.5640 | 0.5274 | 0.7262 |
160
+ | No log | 4.8444 | 218 | 0.5230 | 0.4678 | 0.5230 | 0.7232 |
161
+ | No log | 4.8889 | 220 | 0.5287 | 0.4918 | 0.5287 | 0.7271 |
162
+ | No log | 4.9333 | 222 | 0.5753 | 0.4881 | 0.5753 | 0.7585 |
163
+ | No log | 4.9778 | 224 | 0.5220 | 0.4703 | 0.5220 | 0.7225 |
164
+ | No log | 5.0222 | 226 | 0.6425 | 0.4482 | 0.6425 | 0.8016 |
165
+ | No log | 5.0667 | 228 | 0.8924 | 0.3945 | 0.8924 | 0.9447 |
166
+ | No log | 5.1111 | 230 | 0.8873 | 0.4033 | 0.8873 | 0.9420 |
167
+ | No log | 5.1556 | 232 | 0.6892 | 0.4366 | 0.6892 | 0.8302 |
168
+ | No log | 5.2 | 234 | 0.5602 | 0.4576 | 0.5602 | 0.7485 |
169
+ | No log | 5.2444 | 236 | 0.5459 | 0.4701 | 0.5459 | 0.7388 |
170
+ | No log | 5.2889 | 238 | 0.5722 | 0.4234 | 0.5722 | 0.7564 |
171
+ | No log | 5.3333 | 240 | 0.6691 | 0.4801 | 0.6691 | 0.8180 |
172
+ | No log | 5.3778 | 242 | 0.7954 | 0.4432 | 0.7954 | 0.8919 |
173
+ | No log | 5.4222 | 244 | 0.7479 | 0.4432 | 0.7479 | 0.8648 |
174
+ | No log | 5.4667 | 246 | 0.6297 | 0.4374 | 0.6297 | 0.7935 |
175
+ | No log | 5.5111 | 248 | 0.5944 | 0.5057 | 0.5944 | 0.7709 |
176
+ | No log | 5.5556 | 250 | 0.6060 | 0.4820 | 0.6060 | 0.7785 |
177
+ | No log | 5.6 | 252 | 0.6230 | 0.4467 | 0.6230 | 0.7893 |
178
+ | No log | 5.6444 | 254 | 0.7415 | 0.5263 | 0.7415 | 0.8611 |
179
+ | No log | 5.6889 | 256 | 0.8409 | 0.4455 | 0.8409 | 0.9170 |
180
+ | No log | 5.7333 | 258 | 0.7431 | 0.5263 | 0.7431 | 0.8620 |
181
+ | No log | 5.7778 | 260 | 0.6073 | 0.4622 | 0.6073 | 0.7793 |
182
+ | No log | 5.8222 | 262 | 0.5697 | 0.4337 | 0.5697 | 0.7548 |
183
+ | No log | 5.8667 | 264 | 0.5697 | 0.4082 | 0.5697 | 0.7548 |
184
+ | No log | 5.9111 | 266 | 0.5679 | 0.3625 | 0.5679 | 0.7536 |
185
+ | No log | 5.9556 | 268 | 0.5883 | 0.4179 | 0.5883 | 0.7670 |
186
+ | No log | 6.0 | 270 | 0.6174 | 0.4703 | 0.6174 | 0.7857 |
187
+ | No log | 6.0444 | 272 | 0.5970 | 0.4260 | 0.5970 | 0.7726 |
188
+ | No log | 6.0889 | 274 | 0.5822 | 0.3864 | 0.5822 | 0.7630 |
189
+ | No log | 6.1333 | 276 | 0.6323 | 0.5342 | 0.6323 | 0.7952 |
190
+ | No log | 6.1778 | 278 | 0.7465 | 0.5542 | 0.7465 | 0.8640 |
191
+ | No log | 6.2222 | 280 | 0.6913 | 0.5339 | 0.6913 | 0.8315 |
192
+ | No log | 6.2667 | 282 | 0.5920 | 0.4740 | 0.5920 | 0.7694 |
193
+ | No log | 6.3111 | 284 | 0.5802 | 0.3791 | 0.5802 | 0.7617 |
194
+ | No log | 6.3556 | 286 | 0.5895 | 0.3813 | 0.5895 | 0.7678 |
195
+ | No log | 6.4 | 288 | 0.5740 | 0.3643 | 0.5740 | 0.7576 |
196
+ | No log | 6.4444 | 290 | 0.6805 | 0.4666 | 0.6805 | 0.8249 |
197
+ | No log | 6.4889 | 292 | 0.8338 | 0.4511 | 0.8338 | 0.9131 |
198
+ | No log | 6.5333 | 294 | 0.8457 | 0.4511 | 0.8457 | 0.9196 |
199
+ | No log | 6.5778 | 296 | 0.7313 | 0.4247 | 0.7313 | 0.8552 |
200
+ | No log | 6.6222 | 298 | 0.6879 | 0.4741 | 0.6879 | 0.8294 |
201
+ | No log | 6.6667 | 300 | 0.6530 | 0.4759 | 0.6530 | 0.8081 |
202
+ | No log | 6.7111 | 302 | 0.5749 | 0.4985 | 0.5749 | 0.7582 |
203
+ | No log | 6.7556 | 304 | 0.5879 | 0.4857 | 0.5879 | 0.7668 |
204
+ | No log | 6.8 | 306 | 0.5884 | 0.4915 | 0.5884 | 0.7671 |
205
+ | No log | 6.8444 | 308 | 0.5737 | 0.5109 | 0.5737 | 0.7575 |
206
+ | No log | 6.8889 | 310 | 0.7074 | 0.4610 | 0.7074 | 0.8411 |
207
+ | No log | 6.9333 | 312 | 0.8606 | 0.4895 | 0.8606 | 0.9277 |
208
+ | No log | 6.9778 | 314 | 0.7863 | 0.4562 | 0.7863 | 0.8867 |
209
+ | No log | 7.0222 | 316 | 0.6188 | 0.3471 | 0.6188 | 0.7866 |
210
+ | No log | 7.0667 | 318 | 0.5413 | 0.3840 | 0.5413 | 0.7358 |
211
+ | No log | 7.1111 | 320 | 0.5301 | 0.3840 | 0.5301 | 0.7281 |
212
+ | No log | 7.1556 | 322 | 0.5453 | 0.3425 | 0.5453 | 0.7385 |
213
+ | No log | 7.2 | 324 | 0.5925 | 0.5140 | 0.5925 | 0.7697 |
214
+ | No log | 7.2444 | 326 | 0.6779 | 0.5457 | 0.6779 | 0.8233 |
215
+ | No log | 7.2889 | 328 | 0.6757 | 0.5827 | 0.6757 | 0.8220 |
216
+ | No log | 7.3333 | 330 | 0.6017 | 0.5616 | 0.6017 | 0.7757 |
217
+ | No log | 7.3778 | 332 | 0.6069 | 0.5542 | 0.6069 | 0.7791 |
218
+ | No log | 7.4222 | 334 | 0.5918 | 0.5171 | 0.5918 | 0.7693 |
219
+ | No log | 7.4667 | 336 | 0.5691 | 0.5771 | 0.5691 | 0.7544 |
220
+ | No log | 7.5111 | 338 | 0.5988 | 0.5884 | 0.5988 | 0.7738 |
221
+ | No log | 7.5556 | 340 | 0.6271 | 0.5259 | 0.6271 | 0.7919 |
222
+ | No log | 7.6 | 342 | 0.6283 | 0.5042 | 0.6283 | 0.7926 |
223
+ | No log | 7.6444 | 344 | 0.5967 | 0.4979 | 0.5967 | 0.7725 |
224
+ | No log | 7.6889 | 346 | 0.5818 | 0.4845 | 0.5818 | 0.7628 |
225
+ | No log | 7.7333 | 348 | 0.5703 | 0.4845 | 0.5703 | 0.7552 |
226
+ | No log | 7.7778 | 350 | 0.5367 | 0.4724 | 0.5367 | 0.7326 |
227
+ | No log | 7.8222 | 352 | 0.5415 | 0.4724 | 0.5415 | 0.7359 |
228
+ | No log | 7.8667 | 354 | 0.5574 | 0.5291 | 0.5574 | 0.7466 |
229
+ | No log | 7.9111 | 356 | 0.5282 | 0.5032 | 0.5282 | 0.7268 |
230
+ | No log | 7.9556 | 358 | 0.5154 | 0.5476 | 0.5154 | 0.7179 |
231
+ | No log | 8.0 | 360 | 0.5279 | 0.5640 | 0.5279 | 0.7265 |
232
+ | No log | 8.0444 | 362 | 0.5550 | 0.5447 | 0.5550 | 0.7450 |
233
+ | No log | 8.0889 | 364 | 0.6205 | 0.5673 | 0.6205 | 0.7877 |
234
+ | No log | 8.1333 | 366 | 0.6420 | 0.5645 | 0.6420 | 0.8013 |
235
+ | No log | 8.1778 | 368 | 0.5752 | 0.5934 | 0.5752 | 0.7584 |
236
+ | No log | 8.2222 | 370 | 0.5155 | 0.5444 | 0.5155 | 0.7180 |
237
+ | No log | 8.2667 | 372 | 0.5102 | 0.5218 | 0.5102 | 0.7143 |
238
+ | No log | 8.3111 | 374 | 0.5531 | 0.5237 | 0.5531 | 0.7437 |
239
+ | No log | 8.3556 | 376 | 0.6294 | 0.5394 | 0.6294 | 0.7934 |
240
+ | No log | 8.4 | 378 | 0.7291 | 0.4502 | 0.7291 | 0.8539 |
241
+ | No log | 8.4444 | 380 | 0.7177 | 0.4991 | 0.7177 | 0.8471 |
242
+ | No log | 8.4889 | 382 | 0.6533 | 0.5090 | 0.6533 | 0.8083 |
243
+ | No log | 8.5333 | 384 | 0.5558 | 0.4749 | 0.5558 | 0.7455 |
244
+ | No log | 8.5778 | 386 | 0.5130 | 0.4555 | 0.5130 | 0.7163 |
245
+ | No log | 8.6222 | 388 | 0.5037 | 0.4555 | 0.5037 | 0.7097 |
246
+ | No log | 8.6667 | 390 | 0.5409 | 0.5237 | 0.5409 | 0.7355 |
247
+ | No log | 8.7111 | 392 | 0.6461 | 0.5310 | 0.6461 | 0.8038 |
248
+ | No log | 8.7556 | 394 | 0.7054 | 0.5047 | 0.7054 | 0.8399 |
249
+ | No log | 8.8 | 396 | 0.7834 | 0.5031 | 0.7834 | 0.8851 |
250
+ | No log | 8.8444 | 398 | 0.7096 | 0.4978 | 0.7096 | 0.8424 |
251
+ | No log | 8.8889 | 400 | 0.5768 | 0.5712 | 0.5768 | 0.7594 |
252
+ | No log | 8.9333 | 402 | 0.5033 | 0.5485 | 0.5033 | 0.7094 |
253
+ | No log | 8.9778 | 404 | 0.4997 | 0.5577 | 0.4997 | 0.7069 |
254
+ | No log | 9.0222 | 406 | 0.5388 | 0.5016 | 0.5388 | 0.7340 |
255
+ | No log | 9.0667 | 408 | 0.6234 | 0.5107 | 0.6234 | 0.7895 |
256
+ | No log | 9.1111 | 410 | 0.6471 | 0.5227 | 0.6471 | 0.8044 |
257
+ | No log | 9.1556 | 412 | 0.6730 | 0.5147 | 0.6730 | 0.8204 |
258
+ | No log | 9.2 | 414 | 0.6028 | 0.5326 | 0.6028 | 0.7764 |
259
+ | No log | 9.2444 | 416 | 0.5143 | 0.5485 | 0.5143 | 0.7171 |
260
+ | No log | 9.2889 | 418 | 0.4959 | 0.4955 | 0.4959 | 0.7042 |
261
+ | No log | 9.3333 | 420 | 0.4924 | 0.4955 | 0.4924 | 0.7017 |
262
+ | No log | 9.3778 | 422 | 0.5037 | 0.5831 | 0.5037 | 0.7097 |
263
+ | No log | 9.4222 | 424 | 0.5085 | 0.5577 | 0.5085 | 0.7131 |
264
+ | No log | 9.4667 | 426 | 0.5207 | 0.5123 | 0.5207 | 0.7216 |
265
+ | No log | 9.5111 | 428 | 0.5305 | 0.4875 | 0.5305 | 0.7284 |
266
+ | No log | 9.5556 | 430 | 0.5251 | 0.4147 | 0.5251 | 0.7247 |
267
+ | No log | 9.6 | 432 | 0.5270 | 0.3889 | 0.5270 | 0.7260 |
268
+ | No log | 9.6444 | 434 | 0.5355 | 0.3661 | 0.5355 | 0.7318 |
269
+ | No log | 9.6889 | 436 | 0.5232 | 0.3889 | 0.5232 | 0.7233 |
270
+ | No log | 9.7333 | 438 | 0.5237 | 0.3788 | 0.5237 | 0.7237 |
271
+ | No log | 9.7778 | 440 | 0.5475 | 0.5237 | 0.5475 | 0.7399 |
272
+ | No log | 9.8222 | 442 | 0.6365 | 0.5465 | 0.6365 | 0.7978 |
273
+ | No log | 9.8667 | 444 | 0.7005 | 0.4648 | 0.7005 | 0.8369 |
274
+ | No log | 9.9111 | 446 | 0.6594 | 0.5227 | 0.6594 | 0.8120 |
275
+ | No log | 9.9556 | 448 | 0.5954 | 0.4845 | 0.5954 | 0.7716 |
276
+ | No log | 10.0 | 450 | 0.5947 | 0.5166 | 0.5947 | 0.7712 |
277
+ | No log | 10.0444 | 452 | 0.6388 | 0.4606 | 0.6388 | 0.7992 |
278
+ | No log | 10.0889 | 454 | 0.7601 | 0.4574 | 0.7601 | 0.8718 |
279
+ | No log | 10.1333 | 456 | 0.8772 | 0.3707 | 0.8772 | 0.9366 |
280
+ | No log | 10.1778 | 458 | 0.8593 | 0.4208 | 0.8593 | 0.9270 |
281
+ | No log | 10.2222 | 460 | 0.7747 | 0.4208 | 0.7747 | 0.8801 |
282
+ | No log | 10.2667 | 462 | 0.7031 | 0.4307 | 0.7031 | 0.8385 |
283
+ | No log | 10.3111 | 464 | 0.6634 | 0.4470 | 0.6634 | 0.8145 |
284
+ | No log | 10.3556 | 466 | 0.7032 | 0.4307 | 0.7032 | 0.8386 |
285
+ | No log | 10.4 | 468 | 0.7337 | 0.4203 | 0.7337 | 0.8566 |
286
+ | No log | 10.4444 | 470 | 0.6697 | 0.4203 | 0.6697 | 0.8183 |
287
+ | No log | 10.4889 | 472 | 0.6579 | 0.4666 | 0.6579 | 0.8111 |
288
+ | No log | 10.5333 | 474 | 0.7147 | 0.4203 | 0.7147 | 0.8454 |
289
+ | No log | 10.5778 | 476 | 0.7208 | 0.4133 | 0.7208 | 0.8490 |
290
+ | No log | 10.6222 | 478 | 0.6545 | 0.4880 | 0.6545 | 0.8090 |
291
+ | No log | 10.6667 | 480 | 0.5680 | 0.4705 | 0.5680 | 0.7536 |
292
+ | No log | 10.7111 | 482 | 0.5556 | 0.4124 | 0.5556 | 0.7454 |
293
+ | No log | 10.7556 | 484 | 0.5781 | 0.4437 | 0.5781 | 0.7603 |
294
+ | No log | 10.8 | 486 | 0.6621 | 0.4646 | 0.6621 | 0.8137 |
295
+ | No log | 10.8444 | 488 | 0.7085 | 0.4328 | 0.7085 | 0.8417 |
296
+ | No log | 10.8889 | 490 | 0.6749 | 0.4328 | 0.6749 | 0.8215 |
297
+ | No log | 10.9333 | 492 | 0.5898 | 0.5527 | 0.5898 | 0.7680 |
298
+ | No log | 10.9778 | 494 | 0.5399 | 0.4747 | 0.5399 | 0.7348 |
299
+ | No log | 11.0222 | 496 | 0.5343 | 0.3910 | 0.5343 | 0.7310 |
300
+ | No log | 11.0667 | 498 | 0.5400 | 0.3628 | 0.5400 | 0.7349 |
301
+ | 0.3551 | 11.1111 | 500 | 0.5628 | 0.4828 | 0.5628 | 0.7502 |
302
+ | 0.3551 | 11.1556 | 502 | 0.5764 | 0.5485 | 0.5764 | 0.7592 |
303
+ | 0.3551 | 11.2 | 504 | 0.5640 | 0.5485 | 0.5640 | 0.7510 |
304
+ | 0.3551 | 11.2444 | 506 | 0.5460 | 0.6334 | 0.5460 | 0.7389 |
305
+ | 0.3551 | 11.2889 | 508 | 0.5420 | 0.5578 | 0.5420 | 0.7362 |
306
+ | 0.3551 | 11.3333 | 510 | 0.5420 | 0.5285 | 0.5420 | 0.7362 |
307
+ | 0.3551 | 11.3778 | 512 | 0.5407 | 0.6021 | 0.5407 | 0.7353 |
308
+ | 0.3551 | 11.4222 | 514 | 0.5805 | 0.6150 | 0.5805 | 0.7619 |
309
+ | 0.3551 | 11.4667 | 516 | 0.6137 | 0.5625 | 0.6137 | 0.7834 |
310
+ | 0.3551 | 11.5111 | 518 | 0.5959 | 0.6325 | 0.5959 | 0.7719 |
311
+ | 0.3551 | 11.5556 | 520 | 0.5705 | 0.5813 | 0.5705 | 0.7553 |
312
+ | 0.3551 | 11.6 | 522 | 0.5811 | 0.5886 | 0.5811 | 0.7623 |
313
+ | 0.3551 | 11.6444 | 524 | 0.5889 | 0.5886 | 0.5889 | 0.7674 |
314
+ | 0.3551 | 11.6889 | 526 | 0.5795 | 0.5886 | 0.5795 | 0.7613 |
315
+ | 0.3551 | 11.7333 | 528 | 0.5682 | 0.5373 | 0.5682 | 0.7538 |
316
+ | 0.3551 | 11.7778 | 530 | 0.5675 | 0.5357 | 0.5675 | 0.7533 |
317
+ | 0.3551 | 11.8222 | 532 | 0.5940 | 0.5845 | 0.5940 | 0.7707 |
318
+ | 0.3551 | 11.8667 | 534 | 0.6309 | 0.5226 | 0.6309 | 0.7943 |
319
+ | 0.3551 | 11.9111 | 536 | 0.6616 | 0.4862 | 0.6616 | 0.8134 |
320
+ | 0.3551 | 11.9556 | 538 | 0.6485 | 0.5418 | 0.6485 | 0.8053 |
321
+ | 0.3551 | 12.0 | 540 | 0.6148 | 0.5373 | 0.6148 | 0.7841 |
322
+ | 0.3551 | 12.0444 | 542 | 0.6129 | 0.5373 | 0.6129 | 0.7828 |
323
+ | 0.3551 | 12.0889 | 544 | 0.6003 | 0.5418 | 0.6003 | 0.7748 |
324
+ | 0.3551 | 12.1333 | 546 | 0.5800 | 0.5557 | 0.5800 | 0.7616 |
325
+ | 0.3551 | 12.1778 | 548 | 0.5777 | 0.5913 | 0.5777 | 0.7601 |
326
+ | 0.3551 | 12.2222 | 550 | 0.5743 | 0.5913 | 0.5743 | 0.7578 |
327
+ | 0.3551 | 12.2667 | 552 | 0.5786 | 0.5594 | 0.5786 | 0.7606 |
328
+ | 0.3551 | 12.3111 | 554 | 0.5611 | 0.5557 | 0.5611 | 0.7491 |
329
+ | 0.3551 | 12.3556 | 556 | 0.5661 | 0.5272 | 0.5661 | 0.7524 |
330
+ | 0.3551 | 12.4 | 558 | 0.6003 | 0.5457 | 0.6003 | 0.7748 |
331
+ | 0.3551 | 12.4444 | 560 | 0.6967 | 0.4768 | 0.6967 | 0.8347 |
332
+ | 0.3551 | 12.4889 | 562 | 0.7667 | 0.4381 | 0.7667 | 0.8756 |
333
+ | 0.3551 | 12.5333 | 564 | 0.7095 | 0.4759 | 0.7095 | 0.8423 |
334
+ | 0.3551 | 12.5778 | 566 | 0.6175 | 0.4336 | 0.6175 | 0.7858 |
335
+ | 0.3551 | 12.6222 | 568 | 0.5669 | 0.4747 | 0.5669 | 0.7529 |
336
+
337
+
338
+ ### Framework versions
339
+
340
+ - Transformers 4.44.2
341
+ - Pytorch 2.4.0+cu118
342
+ - Datasets 2.21.0
343
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "aubmindlab/bert-base-arabertv02",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "problem_type": "regression",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 64000
32
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90cfc23279e8d1196da5cf943d7133b884b629e4ffd82edfbdbb705c77cd9003
3
+ size 540799996
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ae4918891dc9ef8bd1446fd1cdaca84d50ace73ba6b497144e1c1c3f7009f63
3
+ size 5240