MayBashendy commited on
Commit
3cd3112
·
verified ·
1 Parent(s): 71d8f3d

Training in progress, step 500

Browse files
Files changed (4) hide show
  1. README.md +314 -0
  2. config.json +32 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,314 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: aubmindlab/bert-base-arabertv02
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: ArabicNewSplits7_FineTuningAraBERT_run1_AugV5_k19_task5_organization
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # ArabicNewSplits7_FineTuningAraBERT_run1_AugV5_k19_task5_organization
15
+
16
+ This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.8857
19
+ - Qwk: 0.4809
20
+ - Mse: 0.8857
21
+ - Rmse: 0.9411
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 100
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
51
+ |:-------------:|:-------:|:----:|:---------------:|:-------:|:------:|:------:|
52
+ | No log | 0.0417 | 2 | 4.3322 | -0.0048 | 4.3322 | 2.0814 |
53
+ | No log | 0.0833 | 4 | 2.5281 | -0.0340 | 2.5281 | 1.5900 |
54
+ | No log | 0.125 | 6 | 1.4897 | 0.0185 | 1.4897 | 1.2205 |
55
+ | No log | 0.1667 | 8 | 1.1472 | 0.2343 | 1.1472 | 1.0711 |
56
+ | No log | 0.2083 | 10 | 1.4258 | 0.0343 | 1.4258 | 1.1941 |
57
+ | No log | 0.25 | 12 | 1.4676 | 0.0568 | 1.4676 | 1.2114 |
58
+ | No log | 0.2917 | 14 | 1.1440 | 0.1848 | 1.1440 | 1.0696 |
59
+ | No log | 0.3333 | 16 | 1.0720 | 0.1313 | 1.0720 | 1.0354 |
60
+ | No log | 0.375 | 18 | 1.0918 | 0.1864 | 1.0918 | 1.0449 |
61
+ | No log | 0.4167 | 20 | 1.0645 | 0.0422 | 1.0645 | 1.0318 |
62
+ | No log | 0.4583 | 22 | 1.1121 | 0.1076 | 1.1121 | 1.0546 |
63
+ | No log | 0.5 | 24 | 1.1023 | 0.0824 | 1.1023 | 1.0499 |
64
+ | No log | 0.5417 | 26 | 1.1543 | 0.1203 | 1.1543 | 1.0744 |
65
+ | No log | 0.5833 | 28 | 1.0460 | 0.1263 | 1.0460 | 1.0228 |
66
+ | No log | 0.625 | 30 | 0.9569 | 0.2865 | 0.9569 | 0.9782 |
67
+ | No log | 0.6667 | 32 | 0.9375 | 0.2865 | 0.9375 | 0.9682 |
68
+ | No log | 0.7083 | 34 | 0.9329 | 0.2671 | 0.9329 | 0.9659 |
69
+ | No log | 0.75 | 36 | 1.0419 | 0.1881 | 1.0419 | 1.0207 |
70
+ | No log | 0.7917 | 38 | 1.4336 | -0.0270 | 1.4336 | 1.1973 |
71
+ | No log | 0.8333 | 40 | 1.3413 | -0.0112 | 1.3413 | 1.1581 |
72
+ | No log | 0.875 | 42 | 0.8825 | 0.3221 | 0.8825 | 0.9394 |
73
+ | No log | 0.9167 | 44 | 0.9190 | 0.4406 | 0.9190 | 0.9587 |
74
+ | No log | 0.9583 | 46 | 0.9979 | 0.2956 | 0.9979 | 0.9989 |
75
+ | No log | 1.0 | 48 | 0.9045 | 0.4357 | 0.9045 | 0.9510 |
76
+ | No log | 1.0417 | 50 | 0.8200 | 0.4210 | 0.8200 | 0.9055 |
77
+ | No log | 1.0833 | 52 | 0.8961 | 0.3815 | 0.8961 | 0.9466 |
78
+ | No log | 1.125 | 54 | 0.9969 | 0.2956 | 0.9969 | 0.9984 |
79
+ | No log | 1.1667 | 56 | 1.1032 | 0.2038 | 1.1032 | 1.0503 |
80
+ | No log | 1.2083 | 58 | 1.1889 | 0.1426 | 1.1889 | 1.0904 |
81
+ | No log | 1.25 | 60 | 0.9552 | 0.3958 | 0.9552 | 0.9773 |
82
+ | No log | 1.2917 | 62 | 0.8357 | 0.5472 | 0.8357 | 0.9142 |
83
+ | No log | 1.3333 | 64 | 0.8712 | 0.5062 | 0.8712 | 0.9334 |
84
+ | No log | 1.375 | 66 | 0.8265 | 0.5195 | 0.8265 | 0.9091 |
85
+ | No log | 1.4167 | 68 | 0.7830 | 0.5107 | 0.7830 | 0.8849 |
86
+ | No log | 1.4583 | 70 | 0.7917 | 0.5528 | 0.7917 | 0.8898 |
87
+ | No log | 1.5 | 72 | 0.8603 | 0.5279 | 0.8603 | 0.9275 |
88
+ | No log | 1.5417 | 74 | 0.8340 | 0.5183 | 0.8340 | 0.9132 |
89
+ | No log | 1.5833 | 76 | 0.7311 | 0.5329 | 0.7311 | 0.8550 |
90
+ | No log | 1.625 | 78 | 0.7282 | 0.5748 | 0.7282 | 0.8533 |
91
+ | No log | 1.6667 | 80 | 0.7276 | 0.5650 | 0.7276 | 0.8530 |
92
+ | No log | 1.7083 | 82 | 0.7115 | 0.5797 | 0.7115 | 0.8435 |
93
+ | No log | 1.75 | 84 | 0.8166 | 0.4921 | 0.8166 | 0.9037 |
94
+ | No log | 1.7917 | 86 | 0.7273 | 0.5654 | 0.7273 | 0.8528 |
95
+ | No log | 1.8333 | 88 | 0.7993 | 0.5339 | 0.7993 | 0.8941 |
96
+ | No log | 1.875 | 90 | 1.4456 | 0.3099 | 1.4456 | 1.2023 |
97
+ | No log | 1.9167 | 92 | 1.4957 | 0.3138 | 1.4957 | 1.2230 |
98
+ | No log | 1.9583 | 94 | 1.1015 | 0.3539 | 1.1015 | 1.0495 |
99
+ | No log | 2.0 | 96 | 0.7592 | 0.4838 | 0.7592 | 0.8713 |
100
+ | No log | 2.0417 | 98 | 0.8233 | 0.4962 | 0.8233 | 0.9073 |
101
+ | No log | 2.0833 | 100 | 1.0542 | 0.3040 | 1.0542 | 1.0268 |
102
+ | No log | 2.125 | 102 | 1.0384 | 0.3424 | 1.0384 | 1.0190 |
103
+ | No log | 2.1667 | 104 | 0.8155 | 0.5245 | 0.8155 | 0.9031 |
104
+ | No log | 2.2083 | 106 | 0.7862 | 0.5575 | 0.7862 | 0.8867 |
105
+ | No log | 2.25 | 108 | 0.8147 | 0.4810 | 0.8147 | 0.9026 |
106
+ | No log | 2.2917 | 110 | 0.8344 | 0.3800 | 0.8344 | 0.9134 |
107
+ | No log | 2.3333 | 112 | 0.8142 | 0.5342 | 0.8142 | 0.9023 |
108
+ | No log | 2.375 | 114 | 0.9228 | 0.4482 | 0.9228 | 0.9606 |
109
+ | No log | 2.4167 | 116 | 0.9353 | 0.4577 | 0.9353 | 0.9671 |
110
+ | No log | 2.4583 | 118 | 0.8401 | 0.4966 | 0.8401 | 0.9166 |
111
+ | No log | 2.5 | 120 | 0.7965 | 0.5450 | 0.7965 | 0.8924 |
112
+ | No log | 2.5417 | 122 | 0.8057 | 0.4996 | 0.8057 | 0.8976 |
113
+ | No log | 2.5833 | 124 | 0.7873 | 0.5124 | 0.7873 | 0.8873 |
114
+ | No log | 2.625 | 126 | 0.8080 | 0.4964 | 0.8080 | 0.8989 |
115
+ | No log | 2.6667 | 128 | 0.8035 | 0.4969 | 0.8035 | 0.8964 |
116
+ | No log | 2.7083 | 130 | 0.7780 | 0.5451 | 0.7780 | 0.8821 |
117
+ | No log | 2.75 | 132 | 0.8098 | 0.5300 | 0.8098 | 0.8999 |
118
+ | No log | 2.7917 | 134 | 0.7938 | 0.5038 | 0.7938 | 0.8909 |
119
+ | No log | 2.8333 | 136 | 0.8025 | 0.5261 | 0.8025 | 0.8958 |
120
+ | No log | 2.875 | 138 | 0.8010 | 0.4903 | 0.8010 | 0.8950 |
121
+ | No log | 2.9167 | 140 | 0.8132 | 0.5463 | 0.8132 | 0.9018 |
122
+ | No log | 2.9583 | 142 | 0.9190 | 0.4521 | 0.9190 | 0.9587 |
123
+ | No log | 3.0 | 144 | 1.0141 | 0.3959 | 1.0141 | 1.0070 |
124
+ | No log | 3.0417 | 146 | 0.9964 | 0.4150 | 0.9964 | 0.9982 |
125
+ | No log | 3.0833 | 148 | 0.8910 | 0.3993 | 0.8910 | 0.9439 |
126
+ | No log | 3.125 | 150 | 0.8635 | 0.4910 | 0.8635 | 0.9292 |
127
+ | No log | 3.1667 | 152 | 0.8781 | 0.4956 | 0.8781 | 0.9371 |
128
+ | No log | 3.2083 | 154 | 0.8687 | 0.5002 | 0.8687 | 0.9320 |
129
+ | No log | 3.25 | 156 | 0.9479 | 0.4244 | 0.9479 | 0.9736 |
130
+ | No log | 3.2917 | 158 | 0.9392 | 0.4098 | 0.9392 | 0.9691 |
131
+ | No log | 3.3333 | 160 | 0.8499 | 0.5135 | 0.8499 | 0.9219 |
132
+ | No log | 3.375 | 162 | 0.8727 | 0.3908 | 0.8727 | 0.9342 |
133
+ | No log | 3.4167 | 164 | 0.8658 | 0.3908 | 0.8658 | 0.9305 |
134
+ | No log | 3.4583 | 166 | 0.8206 | 0.4676 | 0.8206 | 0.9059 |
135
+ | No log | 3.5 | 168 | 0.8539 | 0.4599 | 0.8539 | 0.9241 |
136
+ | No log | 3.5417 | 170 | 0.9221 | 0.4695 | 0.9221 | 0.9603 |
137
+ | No log | 3.5833 | 172 | 0.8504 | 0.4510 | 0.8504 | 0.9222 |
138
+ | No log | 3.625 | 174 | 0.7662 | 0.5621 | 0.7662 | 0.8753 |
139
+ | No log | 3.6667 | 176 | 0.8112 | 0.5098 | 0.8112 | 0.9007 |
140
+ | No log | 3.7083 | 178 | 0.7759 | 0.5253 | 0.7759 | 0.8809 |
141
+ | No log | 3.75 | 180 | 0.7376 | 0.5752 | 0.7376 | 0.8589 |
142
+ | No log | 3.7917 | 182 | 0.7213 | 0.5822 | 0.7213 | 0.8493 |
143
+ | No log | 3.8333 | 184 | 0.7138 | 0.5572 | 0.7138 | 0.8449 |
144
+ | No log | 3.875 | 186 | 0.6895 | 0.5247 | 0.6895 | 0.8303 |
145
+ | No log | 3.9167 | 188 | 0.6717 | 0.5747 | 0.6717 | 0.8195 |
146
+ | No log | 3.9583 | 190 | 0.6500 | 0.5871 | 0.6500 | 0.8062 |
147
+ | No log | 4.0 | 192 | 0.6237 | 0.6076 | 0.6237 | 0.7898 |
148
+ | No log | 4.0417 | 194 | 0.6414 | 0.6179 | 0.6414 | 0.8009 |
149
+ | No log | 4.0833 | 196 | 0.6532 | 0.6512 | 0.6532 | 0.8082 |
150
+ | No log | 4.125 | 198 | 0.6099 | 0.5742 | 0.6099 | 0.7810 |
151
+ | No log | 4.1667 | 200 | 0.6747 | 0.6082 | 0.6747 | 0.8214 |
152
+ | No log | 4.2083 | 202 | 0.7341 | 0.5857 | 0.7341 | 0.8568 |
153
+ | No log | 4.25 | 204 | 0.6794 | 0.5548 | 0.6794 | 0.8243 |
154
+ | No log | 4.2917 | 206 | 0.6475 | 0.5577 | 0.6475 | 0.8047 |
155
+ | No log | 4.3333 | 208 | 0.7071 | 0.5837 | 0.7071 | 0.8409 |
156
+ | No log | 4.375 | 210 | 0.7083 | 0.5746 | 0.7083 | 0.8416 |
157
+ | No log | 4.4167 | 212 | 0.6769 | 0.5391 | 0.6769 | 0.8227 |
158
+ | No log | 4.4583 | 214 | 0.6887 | 0.5214 | 0.6887 | 0.8299 |
159
+ | No log | 4.5 | 216 | 0.8266 | 0.5271 | 0.8266 | 0.9092 |
160
+ | No log | 4.5417 | 218 | 0.8963 | 0.5070 | 0.8963 | 0.9467 |
161
+ | No log | 4.5833 | 220 | 0.7722 | 0.5345 | 0.7722 | 0.8788 |
162
+ | No log | 4.625 | 222 | 0.6847 | 0.5396 | 0.6847 | 0.8275 |
163
+ | No log | 4.6667 | 224 | 0.7353 | 0.5585 | 0.7353 | 0.8575 |
164
+ | No log | 4.7083 | 226 | 0.7818 | 0.4560 | 0.7818 | 0.8842 |
165
+ | No log | 4.75 | 228 | 0.7743 | 0.3882 | 0.7743 | 0.8799 |
166
+ | No log | 4.7917 | 230 | 0.7755 | 0.4373 | 0.7755 | 0.8806 |
167
+ | No log | 4.8333 | 232 | 0.7595 | 0.4090 | 0.7595 | 0.8715 |
168
+ | No log | 4.875 | 234 | 0.7377 | 0.4124 | 0.7377 | 0.8589 |
169
+ | No log | 4.9167 | 236 | 0.7292 | 0.5025 | 0.7292 | 0.8539 |
170
+ | No log | 4.9583 | 238 | 0.7676 | 0.4973 | 0.7676 | 0.8761 |
171
+ | No log | 5.0 | 240 | 0.8075 | 0.4952 | 0.8075 | 0.8986 |
172
+ | No log | 5.0417 | 242 | 0.8578 | 0.5458 | 0.8578 | 0.9262 |
173
+ | No log | 5.0833 | 244 | 0.7872 | 0.4597 | 0.7872 | 0.8872 |
174
+ | No log | 5.125 | 246 | 0.7191 | 0.5734 | 0.7191 | 0.8480 |
175
+ | No log | 5.1667 | 248 | 0.7071 | 0.5171 | 0.7071 | 0.8409 |
176
+ | No log | 5.2083 | 250 | 0.8157 | 0.4578 | 0.8157 | 0.9032 |
177
+ | No log | 5.25 | 252 | 0.9052 | 0.4280 | 0.9052 | 0.9514 |
178
+ | No log | 5.2917 | 254 | 0.8428 | 0.4489 | 0.8428 | 0.9180 |
179
+ | No log | 5.3333 | 256 | 0.7293 | 0.5329 | 0.7293 | 0.8540 |
180
+ | No log | 5.375 | 258 | 0.7361 | 0.5232 | 0.7361 | 0.8580 |
181
+ | No log | 5.4167 | 260 | 0.8102 | 0.4697 | 0.8102 | 0.9001 |
182
+ | No log | 5.4583 | 262 | 0.7904 | 0.5088 | 0.7904 | 0.8890 |
183
+ | No log | 5.5 | 264 | 0.7732 | 0.5304 | 0.7732 | 0.8793 |
184
+ | No log | 5.5417 | 266 | 0.7664 | 0.5303 | 0.7664 | 0.8754 |
185
+ | No log | 5.5833 | 268 | 0.7687 | 0.4835 | 0.7687 | 0.8768 |
186
+ | No log | 5.625 | 270 | 0.8093 | 0.4513 | 0.8093 | 0.8996 |
187
+ | No log | 5.6667 | 272 | 0.7795 | 0.4069 | 0.7795 | 0.8829 |
188
+ | No log | 5.7083 | 274 | 0.8003 | 0.4714 | 0.8003 | 0.8946 |
189
+ | No log | 5.75 | 276 | 0.8880 | 0.4310 | 0.8880 | 0.9423 |
190
+ | No log | 5.7917 | 278 | 0.8889 | 0.4318 | 0.8889 | 0.9428 |
191
+ | No log | 5.8333 | 280 | 0.8459 | 0.4439 | 0.8459 | 0.9197 |
192
+ | No log | 5.875 | 282 | 0.8710 | 0.4310 | 0.8710 | 0.9333 |
193
+ | No log | 5.9167 | 284 | 0.8661 | 0.4310 | 0.8661 | 0.9306 |
194
+ | No log | 5.9583 | 286 | 0.8013 | 0.4714 | 0.8013 | 0.8952 |
195
+ | No log | 6.0 | 288 | 0.7552 | 0.4748 | 0.7552 | 0.8690 |
196
+ | No log | 6.0417 | 290 | 0.7615 | 0.4748 | 0.7615 | 0.8726 |
197
+ | No log | 6.0833 | 292 | 0.7995 | 0.4461 | 0.7995 | 0.8941 |
198
+ | No log | 6.125 | 294 | 0.8797 | 0.4054 | 0.8797 | 0.9379 |
199
+ | No log | 6.1667 | 296 | 0.9766 | 0.4197 | 0.9766 | 0.9882 |
200
+ | No log | 6.2083 | 298 | 0.9645 | 0.3953 | 0.9645 | 0.9821 |
201
+ | No log | 6.25 | 300 | 0.8797 | 0.4558 | 0.8797 | 0.9379 |
202
+ | No log | 6.2917 | 302 | 0.7774 | 0.5305 | 0.7774 | 0.8817 |
203
+ | No log | 6.3333 | 304 | 0.7073 | 0.4883 | 0.7073 | 0.8410 |
204
+ | No log | 6.375 | 306 | 0.6890 | 0.5023 | 0.6890 | 0.8300 |
205
+ | No log | 6.4167 | 308 | 0.6824 | 0.5129 | 0.6824 | 0.8261 |
206
+ | No log | 6.4583 | 310 | 0.7034 | 0.5676 | 0.7034 | 0.8387 |
207
+ | No log | 6.5 | 312 | 0.7455 | 0.5663 | 0.7455 | 0.8634 |
208
+ | No log | 6.5417 | 314 | 0.7167 | 0.5880 | 0.7167 | 0.8466 |
209
+ | No log | 6.5833 | 316 | 0.6949 | 0.5510 | 0.6949 | 0.8336 |
210
+ | No log | 6.625 | 318 | 0.7036 | 0.5950 | 0.7036 | 0.8388 |
211
+ | No log | 6.6667 | 320 | 0.7000 | 0.5510 | 0.7000 | 0.8367 |
212
+ | No log | 6.7083 | 322 | 0.7009 | 0.5510 | 0.7009 | 0.8372 |
213
+ | No log | 6.75 | 324 | 0.7073 | 0.5342 | 0.7073 | 0.8410 |
214
+ | No log | 6.7917 | 326 | 0.7462 | 0.5599 | 0.7462 | 0.8638 |
215
+ | No log | 6.8333 | 328 | 0.8446 | 0.5735 | 0.8446 | 0.9190 |
216
+ | No log | 6.875 | 330 | 0.8554 | 0.4794 | 0.8554 | 0.9249 |
217
+ | No log | 6.9167 | 332 | 0.7694 | 0.5964 | 0.7694 | 0.8772 |
218
+ | No log | 6.9583 | 334 | 0.7019 | 0.4903 | 0.7019 | 0.8378 |
219
+ | No log | 7.0 | 336 | 0.7305 | 0.4765 | 0.7305 | 0.8547 |
220
+ | No log | 7.0417 | 338 | 0.7227 | 0.4641 | 0.7227 | 0.8501 |
221
+ | No log | 7.0833 | 340 | 0.6865 | 0.5033 | 0.6865 | 0.8286 |
222
+ | No log | 7.125 | 342 | 0.7616 | 0.4958 | 0.7616 | 0.8727 |
223
+ | No log | 7.1667 | 344 | 0.8859 | 0.4216 | 0.8859 | 0.9412 |
224
+ | No log | 7.2083 | 346 | 0.9132 | 0.4216 | 0.9132 | 0.9556 |
225
+ | No log | 7.25 | 348 | 0.8983 | 0.3539 | 0.8983 | 0.9478 |
226
+ | No log | 7.2917 | 350 | 0.8823 | 0.3222 | 0.8823 | 0.9393 |
227
+ | No log | 7.3333 | 352 | 0.8383 | 0.3169 | 0.8383 | 0.9156 |
228
+ | No log | 7.375 | 354 | 0.7845 | 0.4309 | 0.7845 | 0.8857 |
229
+ | No log | 7.4167 | 356 | 0.7686 | 0.4576 | 0.7686 | 0.8767 |
230
+ | No log | 7.4583 | 358 | 0.7825 | 0.5242 | 0.7825 | 0.8846 |
231
+ | No log | 7.5 | 360 | 0.7832 | 0.5666 | 0.7832 | 0.8850 |
232
+ | No log | 7.5417 | 362 | 0.8219 | 0.5636 | 0.8219 | 0.9066 |
233
+ | No log | 7.5833 | 364 | 0.7890 | 0.6071 | 0.7890 | 0.8883 |
234
+ | No log | 7.625 | 366 | 0.7070 | 0.5923 | 0.7070 | 0.8408 |
235
+ | No log | 7.6667 | 368 | 0.6793 | 0.5678 | 0.6793 | 0.8242 |
236
+ | No log | 7.7083 | 370 | 0.6742 | 0.5833 | 0.6742 | 0.8211 |
237
+ | No log | 7.75 | 372 | 0.6843 | 0.5033 | 0.6843 | 0.8272 |
238
+ | No log | 7.7917 | 374 | 0.6911 | 0.5018 | 0.6911 | 0.8313 |
239
+ | No log | 7.8333 | 376 | 0.7138 | 0.5865 | 0.7138 | 0.8449 |
240
+ | No log | 7.875 | 378 | 0.7463 | 0.5601 | 0.7463 | 0.8639 |
241
+ | No log | 7.9167 | 380 | 0.7405 | 0.5601 | 0.7405 | 0.8605 |
242
+ | No log | 7.9583 | 382 | 0.7043 | 0.6082 | 0.7043 | 0.8392 |
243
+ | No log | 8.0 | 384 | 0.6661 | 0.5835 | 0.6661 | 0.8161 |
244
+ | No log | 8.0417 | 386 | 0.6714 | 0.5629 | 0.6714 | 0.8194 |
245
+ | No log | 8.0833 | 388 | 0.6763 | 0.5629 | 0.6763 | 0.8224 |
246
+ | No log | 8.125 | 390 | 0.6741 | 0.5629 | 0.6741 | 0.8210 |
247
+ | No log | 8.1667 | 392 | 0.6892 | 0.5304 | 0.6892 | 0.8302 |
248
+ | No log | 8.2083 | 394 | 0.6887 | 0.5442 | 0.6887 | 0.8299 |
249
+ | No log | 8.25 | 396 | 0.6785 | 0.5171 | 0.6785 | 0.8237 |
250
+ | No log | 8.2917 | 398 | 0.6890 | 0.5549 | 0.6890 | 0.8300 |
251
+ | No log | 8.3333 | 400 | 0.7006 | 0.5003 | 0.7006 | 0.8370 |
252
+ | No log | 8.375 | 402 | 0.7508 | 0.5429 | 0.7508 | 0.8665 |
253
+ | No log | 8.4167 | 404 | 0.7498 | 0.5429 | 0.7498 | 0.8659 |
254
+ | No log | 8.4583 | 406 | 0.7334 | 0.5245 | 0.7334 | 0.8564 |
255
+ | No log | 8.5 | 408 | 0.7353 | 0.5127 | 0.7353 | 0.8575 |
256
+ | No log | 8.5417 | 410 | 0.7294 | 0.4660 | 0.7294 | 0.8541 |
257
+ | No log | 8.5833 | 412 | 0.7272 | 0.4660 | 0.7272 | 0.8527 |
258
+ | No log | 8.625 | 414 | 0.7272 | 0.4660 | 0.7272 | 0.8527 |
259
+ | No log | 8.6667 | 416 | 0.7308 | 0.4882 | 0.7308 | 0.8549 |
260
+ | No log | 8.7083 | 418 | 0.7712 | 0.5728 | 0.7712 | 0.8782 |
261
+ | No log | 8.75 | 420 | 0.7667 | 0.5666 | 0.7667 | 0.8756 |
262
+ | No log | 8.7917 | 422 | 0.7521 | 0.5451 | 0.7521 | 0.8672 |
263
+ | No log | 8.8333 | 424 | 0.7278 | 0.5002 | 0.7278 | 0.8531 |
264
+ | No log | 8.875 | 426 | 0.7227 | 0.5247 | 0.7227 | 0.8501 |
265
+ | No log | 8.9167 | 428 | 0.7265 | 0.5117 | 0.7265 | 0.8524 |
266
+ | No log | 8.9583 | 430 | 0.7262 | 0.5131 | 0.7262 | 0.8522 |
267
+ | No log | 9.0 | 432 | 0.7351 | 0.5033 | 0.7351 | 0.8574 |
268
+ | No log | 9.0417 | 434 | 0.7263 | 0.4450 | 0.7263 | 0.8523 |
269
+ | No log | 9.0833 | 436 | 0.7124 | 0.5050 | 0.7124 | 0.8440 |
270
+ | No log | 9.125 | 438 | 0.7116 | 0.5050 | 0.7116 | 0.8436 |
271
+ | No log | 9.1667 | 440 | 0.7240 | 0.5731 | 0.7240 | 0.8509 |
272
+ | No log | 9.2083 | 442 | 0.7957 | 0.5650 | 0.7957 | 0.8920 |
273
+ | No log | 9.25 | 444 | 0.8021 | 0.5447 | 0.8021 | 0.8956 |
274
+ | No log | 9.2917 | 446 | 0.7347 | 0.5572 | 0.7347 | 0.8572 |
275
+ | No log | 9.3333 | 448 | 0.6936 | 0.5622 | 0.6936 | 0.8328 |
276
+ | No log | 9.375 | 450 | 0.6997 | 0.4118 | 0.6997 | 0.8365 |
277
+ | No log | 9.4167 | 452 | 0.6979 | 0.4493 | 0.6979 | 0.8354 |
278
+ | No log | 9.4583 | 454 | 0.6768 | 0.5288 | 0.6768 | 0.8227 |
279
+ | No log | 9.5 | 456 | 0.6791 | 0.5259 | 0.6791 | 0.8241 |
280
+ | No log | 9.5417 | 458 | 0.7070 | 0.6051 | 0.7070 | 0.8408 |
281
+ | No log | 9.5833 | 460 | 0.7505 | 0.5938 | 0.7505 | 0.8663 |
282
+ | No log | 9.625 | 462 | 0.8078 | 0.5628 | 0.8078 | 0.8988 |
283
+ | No log | 9.6667 | 464 | 0.8080 | 0.5647 | 0.8080 | 0.8989 |
284
+ | No log | 9.7083 | 466 | 0.7644 | 0.5487 | 0.7644 | 0.8743 |
285
+ | No log | 9.75 | 468 | 0.7235 | 0.5823 | 0.7235 | 0.8506 |
286
+ | No log | 9.7917 | 470 | 0.7142 | 0.5495 | 0.7142 | 0.8451 |
287
+ | No log | 9.8333 | 472 | 0.7044 | 0.5627 | 0.7044 | 0.8393 |
288
+ | No log | 9.875 | 474 | 0.6942 | 0.5862 | 0.6942 | 0.8332 |
289
+ | No log | 9.9167 | 476 | 0.7021 | 0.4581 | 0.7021 | 0.8379 |
290
+ | No log | 9.9583 | 478 | 0.7070 | 0.4949 | 0.7070 | 0.8408 |
291
+ | No log | 10.0 | 480 | 0.7005 | 0.5169 | 0.7005 | 0.8369 |
292
+ | No log | 10.0417 | 482 | 0.6892 | 0.4922 | 0.6892 | 0.8302 |
293
+ | No log | 10.0833 | 484 | 0.7208 | 0.5380 | 0.7208 | 0.8490 |
294
+ | No log | 10.125 | 486 | 0.7798 | 0.5170 | 0.7798 | 0.8830 |
295
+ | No log | 10.1667 | 488 | 0.7857 | 0.5385 | 0.7857 | 0.8864 |
296
+ | No log | 10.2083 | 490 | 0.7407 | 0.5482 | 0.7407 | 0.8606 |
297
+ | No log | 10.25 | 492 | 0.6870 | 0.5025 | 0.6870 | 0.8288 |
298
+ | No log | 10.2917 | 494 | 0.6793 | 0.5419 | 0.6793 | 0.8242 |
299
+ | No log | 10.3333 | 496 | 0.6878 | 0.5405 | 0.6878 | 0.8293 |
300
+ | No log | 10.375 | 498 | 0.7346 | 0.5380 | 0.7346 | 0.8571 |
301
+ | 0.3005 | 10.4167 | 500 | 0.8043 | 0.5349 | 0.8043 | 0.8968 |
302
+ | 0.3005 | 10.4583 | 502 | 0.8452 | 0.5167 | 0.8452 | 0.9194 |
303
+ | 0.3005 | 10.5 | 504 | 0.8923 | 0.4681 | 0.8923 | 0.9446 |
304
+ | 0.3005 | 10.5417 | 506 | 0.9333 | 0.3738 | 0.9333 | 0.9661 |
305
+ | 0.3005 | 10.5833 | 508 | 0.9559 | 0.4539 | 0.9559 | 0.9777 |
306
+ | 0.3005 | 10.625 | 510 | 0.8857 | 0.4809 | 0.8857 | 0.9411 |
307
+
308
+
309
+ ### Framework versions
310
+
311
+ - Transformers 4.44.2
312
+ - Pytorch 2.4.0+cu118
313
+ - Datasets 2.21.0
314
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "aubmindlab/bert-base-arabertv02",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "problem_type": "regression",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 64000
32
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0110332bab302aeda2fef99c74779490cf2d9c0621b5b97fdf68482a5de8ccdb
3
+ size 540799996
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1067e07faaced6ad6e251d453531aba9990b75174a5eb64e5b18dbb9f9b1f88e
3
+ size 5240