MayBashendy commited on
Commit
b1822be
·
verified ·
1 Parent(s): dd75967

Training in progress, step 500

Browse files
Files changed (4) hide show
  1. README.md +314 -0
  2. config.json +32 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,314 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: aubmindlab/bert-base-arabertv02
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: ArabicNewSplits7_FineTuningAraBERT_run1_AugV5_k4_task7_organization
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # ArabicNewSplits7_FineTuningAraBERT_run1_AugV5_k4_task7_organization
15
+
16
+ This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.4544
19
+ - Qwk: 0.6133
20
+ - Mse: 0.4544
21
+ - Rmse: 0.6741
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 100
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
51
+ |:-------------:|:-------:|:----:|:---------------:|:-------:|:------:|:------:|
52
+ | No log | 0.1667 | 2 | 2.6011 | -0.0262 | 2.6011 | 1.6128 |
53
+ | No log | 0.3333 | 4 | 1.3154 | 0.0754 | 1.3154 | 1.1469 |
54
+ | No log | 0.5 | 6 | 0.8718 | 0.0944 | 0.8718 | 0.9337 |
55
+ | No log | 0.6667 | 8 | 0.8615 | -0.0483 | 0.8615 | 0.9282 |
56
+ | No log | 0.8333 | 10 | 0.7831 | 0.1313 | 0.7831 | 0.8849 |
57
+ | No log | 1.0 | 12 | 0.7177 | 0.0889 | 0.7177 | 0.8472 |
58
+ | No log | 1.1667 | 14 | 0.8447 | 0.2435 | 0.8447 | 0.9191 |
59
+ | No log | 1.3333 | 16 | 0.9153 | 0.2702 | 0.9153 | 0.9567 |
60
+ | No log | 1.5 | 18 | 1.0602 | 0.1737 | 1.0602 | 1.0297 |
61
+ | No log | 1.6667 | 20 | 0.7519 | 0.4246 | 0.7519 | 0.8671 |
62
+ | No log | 1.8333 | 22 | 0.5493 | 0.3745 | 0.5493 | 0.7411 |
63
+ | No log | 2.0 | 24 | 0.5618 | 0.4158 | 0.5618 | 0.7496 |
64
+ | No log | 2.1667 | 26 | 0.5797 | 0.3996 | 0.5797 | 0.7614 |
65
+ | No log | 2.3333 | 28 | 0.5338 | 0.4614 | 0.5338 | 0.7306 |
66
+ | No log | 2.5 | 30 | 0.5257 | 0.4384 | 0.5257 | 0.7251 |
67
+ | No log | 2.6667 | 32 | 0.6413 | 0.5171 | 0.6413 | 0.8008 |
68
+ | No log | 2.8333 | 34 | 0.5914 | 0.4756 | 0.5914 | 0.7690 |
69
+ | No log | 3.0 | 36 | 0.5618 | 0.4979 | 0.5618 | 0.7496 |
70
+ | No log | 3.1667 | 38 | 0.5462 | 0.5195 | 0.5462 | 0.7391 |
71
+ | No log | 3.3333 | 40 | 0.5712 | 0.5195 | 0.5712 | 0.7558 |
72
+ | No log | 3.5 | 42 | 0.5502 | 0.5357 | 0.5502 | 0.7418 |
73
+ | No log | 3.6667 | 44 | 0.6169 | 0.4807 | 0.6169 | 0.7854 |
74
+ | No log | 3.8333 | 46 | 0.8249 | 0.4260 | 0.8249 | 0.9083 |
75
+ | No log | 4.0 | 48 | 0.7295 | 0.4444 | 0.7295 | 0.8541 |
76
+ | No log | 4.1667 | 50 | 0.5392 | 0.5406 | 0.5392 | 0.7343 |
77
+ | No log | 4.3333 | 52 | 0.5370 | 0.5015 | 0.5370 | 0.7328 |
78
+ | No log | 4.5 | 54 | 0.5520 | 0.4920 | 0.5520 | 0.7430 |
79
+ | No log | 4.6667 | 56 | 0.5263 | 0.5561 | 0.5263 | 0.7255 |
80
+ | No log | 4.8333 | 58 | 0.6657 | 0.4961 | 0.6657 | 0.8159 |
81
+ | No log | 5.0 | 60 | 0.7027 | 0.4906 | 0.7027 | 0.8383 |
82
+ | No log | 5.1667 | 62 | 0.6820 | 0.4906 | 0.6820 | 0.8259 |
83
+ | No log | 5.3333 | 64 | 0.5220 | 0.5697 | 0.5220 | 0.7225 |
84
+ | No log | 5.5 | 66 | 0.5394 | 0.4923 | 0.5394 | 0.7344 |
85
+ | No log | 5.6667 | 68 | 0.5961 | 0.5330 | 0.5961 | 0.7721 |
86
+ | No log | 5.8333 | 70 | 0.5405 | 0.5823 | 0.5405 | 0.7352 |
87
+ | No log | 6.0 | 72 | 0.5448 | 0.6130 | 0.5448 | 0.7381 |
88
+ | No log | 6.1667 | 74 | 0.5389 | 0.5024 | 0.5389 | 0.7341 |
89
+ | No log | 6.3333 | 76 | 0.5292 | 0.4901 | 0.5292 | 0.7275 |
90
+ | No log | 6.5 | 78 | 0.5634 | 0.5908 | 0.5634 | 0.7506 |
91
+ | No log | 6.6667 | 80 | 0.4995 | 0.4904 | 0.4995 | 0.7068 |
92
+ | No log | 6.8333 | 82 | 0.4983 | 0.5965 | 0.4983 | 0.7059 |
93
+ | No log | 7.0 | 84 | 0.4749 | 0.5882 | 0.4749 | 0.6891 |
94
+ | No log | 7.1667 | 86 | 0.5067 | 0.5932 | 0.5067 | 0.7118 |
95
+ | No log | 7.3333 | 88 | 0.7851 | 0.4815 | 0.7851 | 0.8860 |
96
+ | No log | 7.5 | 90 | 0.7856 | 0.4993 | 0.7856 | 0.8864 |
97
+ | No log | 7.6667 | 92 | 0.5632 | 0.5874 | 0.5632 | 0.7505 |
98
+ | No log | 7.8333 | 94 | 0.4890 | 0.6307 | 0.4890 | 0.6993 |
99
+ | No log | 8.0 | 96 | 0.4868 | 0.5742 | 0.4868 | 0.6977 |
100
+ | No log | 8.1667 | 98 | 0.5075 | 0.5654 | 0.5075 | 0.7124 |
101
+ | No log | 8.3333 | 100 | 0.6534 | 0.5595 | 0.6534 | 0.8083 |
102
+ | No log | 8.5 | 102 | 0.6808 | 0.5408 | 0.6808 | 0.8251 |
103
+ | No log | 8.6667 | 104 | 0.5376 | 0.5765 | 0.5376 | 0.7332 |
104
+ | No log | 8.8333 | 106 | 0.4917 | 0.5617 | 0.4917 | 0.7012 |
105
+ | No log | 9.0 | 108 | 0.5678 | 0.5495 | 0.5678 | 0.7535 |
106
+ | No log | 9.1667 | 110 | 0.5031 | 0.5559 | 0.5031 | 0.7093 |
107
+ | No log | 9.3333 | 112 | 0.5725 | 0.5683 | 0.5725 | 0.7566 |
108
+ | No log | 9.5 | 114 | 0.6775 | 0.5266 | 0.6775 | 0.8231 |
109
+ | No log | 9.6667 | 116 | 0.6063 | 0.5683 | 0.6063 | 0.7787 |
110
+ | No log | 9.8333 | 118 | 0.5102 | 0.5413 | 0.5102 | 0.7143 |
111
+ | No log | 10.0 | 120 | 0.5376 | 0.5617 | 0.5376 | 0.7332 |
112
+ | No log | 10.1667 | 122 | 0.5191 | 0.6395 | 0.5191 | 0.7205 |
113
+ | No log | 10.3333 | 124 | 0.5045 | 0.4972 | 0.5045 | 0.7103 |
114
+ | No log | 10.5 | 126 | 0.5936 | 0.5298 | 0.5936 | 0.7705 |
115
+ | No log | 10.6667 | 128 | 0.6632 | 0.5200 | 0.6632 | 0.8144 |
116
+ | No log | 10.8333 | 130 | 0.6045 | 0.5378 | 0.6045 | 0.7775 |
117
+ | No log | 11.0 | 132 | 0.5067 | 0.4536 | 0.5067 | 0.7118 |
118
+ | No log | 11.1667 | 134 | 0.5103 | 0.5868 | 0.5103 | 0.7144 |
119
+ | No log | 11.3333 | 136 | 0.5105 | 0.5326 | 0.5105 | 0.7145 |
120
+ | No log | 11.5 | 138 | 0.5009 | 0.5440 | 0.5009 | 0.7078 |
121
+ | No log | 11.6667 | 140 | 0.5473 | 0.5265 | 0.5473 | 0.7398 |
122
+ | No log | 11.8333 | 142 | 0.5663 | 0.5666 | 0.5663 | 0.7525 |
123
+ | No log | 12.0 | 144 | 0.5096 | 0.5539 | 0.5096 | 0.7138 |
124
+ | No log | 12.1667 | 146 | 0.4889 | 0.5379 | 0.4889 | 0.6992 |
125
+ | No log | 12.3333 | 148 | 0.5018 | 0.5633 | 0.5018 | 0.7084 |
126
+ | No log | 12.5 | 150 | 0.4820 | 0.5533 | 0.4820 | 0.6943 |
127
+ | No log | 12.6667 | 152 | 0.4824 | 0.5604 | 0.4824 | 0.6945 |
128
+ | No log | 12.8333 | 154 | 0.5330 | 0.5486 | 0.5330 | 0.7300 |
129
+ | No log | 13.0 | 156 | 0.5875 | 0.5595 | 0.5875 | 0.7665 |
130
+ | No log | 13.1667 | 158 | 0.5877 | 0.5393 | 0.5877 | 0.7666 |
131
+ | No log | 13.3333 | 160 | 0.4954 | 0.5841 | 0.4954 | 0.7039 |
132
+ | No log | 13.5 | 162 | 0.4481 | 0.5815 | 0.4481 | 0.6694 |
133
+ | No log | 13.6667 | 164 | 0.4591 | 0.5974 | 0.4591 | 0.6776 |
134
+ | No log | 13.8333 | 166 | 0.4762 | 0.6518 | 0.4762 | 0.6901 |
135
+ | No log | 14.0 | 168 | 0.4586 | 0.6716 | 0.4586 | 0.6772 |
136
+ | No log | 14.1667 | 170 | 0.4692 | 0.5767 | 0.4692 | 0.6850 |
137
+ | No log | 14.3333 | 172 | 0.4634 | 0.5840 | 0.4634 | 0.6807 |
138
+ | No log | 14.5 | 174 | 0.4453 | 0.6739 | 0.4453 | 0.6673 |
139
+ | No log | 14.6667 | 176 | 0.4486 | 0.7053 | 0.4486 | 0.6698 |
140
+ | No log | 14.8333 | 178 | 0.4373 | 0.6839 | 0.4373 | 0.6613 |
141
+ | No log | 15.0 | 180 | 0.4925 | 0.5567 | 0.4925 | 0.7017 |
142
+ | No log | 15.1667 | 182 | 0.5562 | 0.5595 | 0.5562 | 0.7458 |
143
+ | No log | 15.3333 | 184 | 0.6857 | 0.5093 | 0.6857 | 0.8281 |
144
+ | No log | 15.5 | 186 | 0.7068 | 0.5146 | 0.7068 | 0.8407 |
145
+ | No log | 15.6667 | 188 | 0.5838 | 0.6081 | 0.5838 | 0.7641 |
146
+ | No log | 15.8333 | 190 | 0.5012 | 0.6198 | 0.5012 | 0.7080 |
147
+ | No log | 16.0 | 192 | 0.5635 | 0.6237 | 0.5635 | 0.7506 |
148
+ | No log | 16.1667 | 194 | 0.5821 | 0.5562 | 0.5821 | 0.7630 |
149
+ | No log | 16.3333 | 196 | 0.5132 | 0.5457 | 0.5132 | 0.7163 |
150
+ | No log | 16.5 | 198 | 0.4828 | 0.5662 | 0.4828 | 0.6948 |
151
+ | No log | 16.6667 | 200 | 0.5140 | 0.6118 | 0.5140 | 0.7169 |
152
+ | No log | 16.8333 | 202 | 0.5379 | 0.5596 | 0.5379 | 0.7334 |
153
+ | No log | 17.0 | 204 | 0.5083 | 0.5756 | 0.5083 | 0.7130 |
154
+ | No log | 17.1667 | 206 | 0.4918 | 0.6307 | 0.4918 | 0.7013 |
155
+ | No log | 17.3333 | 208 | 0.5050 | 0.6314 | 0.5050 | 0.7106 |
156
+ | No log | 17.5 | 210 | 0.5291 | 0.6074 | 0.5291 | 0.7274 |
157
+ | No log | 17.6667 | 212 | 0.5438 | 0.6070 | 0.5438 | 0.7375 |
158
+ | No log | 17.8333 | 214 | 0.5160 | 0.5953 | 0.5160 | 0.7183 |
159
+ | No log | 18.0 | 216 | 0.4724 | 0.6006 | 0.4724 | 0.6873 |
160
+ | No log | 18.1667 | 218 | 0.4623 | 0.5974 | 0.4623 | 0.6799 |
161
+ | No log | 18.3333 | 220 | 0.4621 | 0.5951 | 0.4621 | 0.6798 |
162
+ | No log | 18.5 | 222 | 0.4480 | 0.5902 | 0.4480 | 0.6693 |
163
+ | No log | 18.6667 | 224 | 0.4655 | 0.5751 | 0.4655 | 0.6823 |
164
+ | No log | 18.8333 | 226 | 0.5566 | 0.6104 | 0.5566 | 0.7461 |
165
+ | No log | 19.0 | 228 | 0.5943 | 0.5735 | 0.5943 | 0.7709 |
166
+ | No log | 19.1667 | 230 | 0.5433 | 0.6104 | 0.5433 | 0.7371 |
167
+ | No log | 19.3333 | 232 | 0.4723 | 0.5554 | 0.4723 | 0.6872 |
168
+ | No log | 19.5 | 234 | 0.4777 | 0.5840 | 0.4777 | 0.6911 |
169
+ | No log | 19.6667 | 236 | 0.5100 | 0.6690 | 0.5100 | 0.7141 |
170
+ | No log | 19.8333 | 238 | 0.4954 | 0.6282 | 0.4954 | 0.7038 |
171
+ | No log | 20.0 | 240 | 0.4743 | 0.5866 | 0.4743 | 0.6887 |
172
+ | No log | 20.1667 | 242 | 0.4738 | 0.5812 | 0.4738 | 0.6884 |
173
+ | No log | 20.3333 | 244 | 0.4693 | 0.5596 | 0.4693 | 0.6850 |
174
+ | No log | 20.5 | 246 | 0.4898 | 0.5607 | 0.4898 | 0.6999 |
175
+ | No log | 20.6667 | 248 | 0.5096 | 0.5692 | 0.5096 | 0.7139 |
176
+ | No log | 20.8333 | 250 | 0.5078 | 0.5352 | 0.5078 | 0.7126 |
177
+ | No log | 21.0 | 252 | 0.4878 | 0.5522 | 0.4878 | 0.6984 |
178
+ | No log | 21.1667 | 254 | 0.4673 | 0.5114 | 0.4673 | 0.6836 |
179
+ | No log | 21.3333 | 256 | 0.4602 | 0.5665 | 0.4602 | 0.6784 |
180
+ | No log | 21.5 | 258 | 0.4526 | 0.5522 | 0.4526 | 0.6727 |
181
+ | No log | 21.6667 | 260 | 0.4844 | 0.5932 | 0.4844 | 0.6960 |
182
+ | No log | 21.8333 | 262 | 0.4923 | 0.5974 | 0.4923 | 0.7016 |
183
+ | No log | 22.0 | 264 | 0.4852 | 0.6254 | 0.4852 | 0.6966 |
184
+ | No log | 22.1667 | 266 | 0.5069 | 0.5745 | 0.5069 | 0.7119 |
185
+ | No log | 22.3333 | 268 | 0.4970 | 0.5786 | 0.4970 | 0.7050 |
186
+ | No log | 22.5 | 270 | 0.4616 | 0.5937 | 0.4616 | 0.6794 |
187
+ | No log | 22.6667 | 272 | 0.4682 | 0.4924 | 0.4682 | 0.6842 |
188
+ | No log | 22.8333 | 274 | 0.4903 | 0.4538 | 0.4903 | 0.7002 |
189
+ | No log | 23.0 | 276 | 0.4817 | 0.4634 | 0.4817 | 0.6940 |
190
+ | No log | 23.1667 | 278 | 0.4714 | 0.4825 | 0.4714 | 0.6866 |
191
+ | No log | 23.3333 | 280 | 0.4492 | 0.5286 | 0.4492 | 0.6702 |
192
+ | No log | 23.5 | 282 | 0.4645 | 0.5841 | 0.4645 | 0.6815 |
193
+ | No log | 23.6667 | 284 | 0.4808 | 0.6257 | 0.4808 | 0.6934 |
194
+ | No log | 23.8333 | 286 | 0.4753 | 0.6340 | 0.4753 | 0.6894 |
195
+ | No log | 24.0 | 288 | 0.4774 | 0.6340 | 0.4774 | 0.6909 |
196
+ | No log | 24.1667 | 290 | 0.4812 | 0.5979 | 0.4812 | 0.6937 |
197
+ | No log | 24.3333 | 292 | 0.4908 | 0.5809 | 0.4908 | 0.7005 |
198
+ | No log | 24.5 | 294 | 0.4890 | 0.6289 | 0.4890 | 0.6993 |
199
+ | No log | 24.6667 | 296 | 0.4722 | 0.6158 | 0.4722 | 0.6872 |
200
+ | No log | 24.8333 | 298 | 0.4831 | 0.6195 | 0.4831 | 0.6950 |
201
+ | No log | 25.0 | 300 | 0.4727 | 0.6345 | 0.4727 | 0.6875 |
202
+ | No log | 25.1667 | 302 | 0.4988 | 0.5599 | 0.4988 | 0.7063 |
203
+ | No log | 25.3333 | 304 | 0.5063 | 0.5400 | 0.5063 | 0.7115 |
204
+ | No log | 25.5 | 306 | 0.4797 | 0.5527 | 0.4797 | 0.6926 |
205
+ | No log | 25.6667 | 308 | 0.4567 | 0.5114 | 0.4567 | 0.6758 |
206
+ | No log | 25.8333 | 310 | 0.4664 | 0.5267 | 0.4664 | 0.6829 |
207
+ | No log | 26.0 | 312 | 0.4713 | 0.5305 | 0.4713 | 0.6865 |
208
+ | No log | 26.1667 | 314 | 0.4952 | 0.5960 | 0.4952 | 0.7037 |
209
+ | No log | 26.3333 | 316 | 0.5123 | 0.6333 | 0.5123 | 0.7158 |
210
+ | No log | 26.5 | 318 | 0.5085 | 0.6484 | 0.5085 | 0.7131 |
211
+ | No log | 26.6667 | 320 | 0.5142 | 0.6657 | 0.5142 | 0.7171 |
212
+ | No log | 26.8333 | 322 | 0.5174 | 0.6484 | 0.5174 | 0.7193 |
213
+ | No log | 27.0 | 324 | 0.5153 | 0.6040 | 0.5153 | 0.7179 |
214
+ | No log | 27.1667 | 326 | 0.5514 | 0.5942 | 0.5514 | 0.7426 |
215
+ | No log | 27.3333 | 328 | 0.6137 | 0.5521 | 0.6137 | 0.7834 |
216
+ | No log | 27.5 | 330 | 0.6145 | 0.5208 | 0.6145 | 0.7839 |
217
+ | No log | 27.6667 | 332 | 0.5887 | 0.5111 | 0.5887 | 0.7673 |
218
+ | No log | 27.8333 | 334 | 0.5088 | 0.5687 | 0.5088 | 0.7133 |
219
+ | No log | 28.0 | 336 | 0.4745 | 0.5951 | 0.4745 | 0.6888 |
220
+ | No log | 28.1667 | 338 | 0.4699 | 0.5714 | 0.4699 | 0.6855 |
221
+ | No log | 28.3333 | 340 | 0.4661 | 0.6092 | 0.4661 | 0.6827 |
222
+ | No log | 28.5 | 342 | 0.4680 | 0.5889 | 0.4680 | 0.6841 |
223
+ | No log | 28.6667 | 344 | 0.4687 | 0.6001 | 0.4687 | 0.6846 |
224
+ | No log | 28.8333 | 346 | 0.4817 | 0.6709 | 0.4817 | 0.6940 |
225
+ | No log | 29.0 | 348 | 0.4879 | 0.6631 | 0.4879 | 0.6985 |
226
+ | No log | 29.1667 | 350 | 0.4979 | 0.6361 | 0.4979 | 0.7056 |
227
+ | No log | 29.3333 | 352 | 0.4894 | 0.6526 | 0.4894 | 0.6996 |
228
+ | No log | 29.5 | 354 | 0.4741 | 0.6127 | 0.4741 | 0.6886 |
229
+ | No log | 29.6667 | 356 | 0.4679 | 0.5538 | 0.4679 | 0.6840 |
230
+ | No log | 29.8333 | 358 | 0.4755 | 0.5539 | 0.4755 | 0.6896 |
231
+ | No log | 30.0 | 360 | 0.4939 | 0.5404 | 0.4939 | 0.7027 |
232
+ | No log | 30.1667 | 362 | 0.5404 | 0.5499 | 0.5404 | 0.7351 |
233
+ | No log | 30.3333 | 364 | 0.5608 | 0.4845 | 0.5608 | 0.7489 |
234
+ | No log | 30.5 | 366 | 0.5286 | 0.5157 | 0.5286 | 0.7271 |
235
+ | No log | 30.6667 | 368 | 0.4972 | 0.5190 | 0.4972 | 0.7051 |
236
+ | No log | 30.8333 | 370 | 0.4928 | 0.5190 | 0.4928 | 0.7020 |
237
+ | No log | 31.0 | 372 | 0.4915 | 0.5715 | 0.4915 | 0.7011 |
238
+ | No log | 31.1667 | 374 | 0.4847 | 0.5910 | 0.4847 | 0.6962 |
239
+ | No log | 31.3333 | 376 | 0.4834 | 0.5840 | 0.4834 | 0.6953 |
240
+ | No log | 31.5 | 378 | 0.4828 | 0.5902 | 0.4828 | 0.6948 |
241
+ | No log | 31.6667 | 380 | 0.4806 | 0.5902 | 0.4806 | 0.6933 |
242
+ | No log | 31.8333 | 382 | 0.4704 | 0.5982 | 0.4704 | 0.6859 |
243
+ | No log | 32.0 | 384 | 0.4582 | 0.5669 | 0.4582 | 0.6769 |
244
+ | No log | 32.1667 | 386 | 0.4520 | 0.5555 | 0.4520 | 0.6723 |
245
+ | No log | 32.3333 | 388 | 0.4463 | 0.5538 | 0.4463 | 0.6680 |
246
+ | No log | 32.5 | 390 | 0.4430 | 0.5357 | 0.4430 | 0.6655 |
247
+ | No log | 32.6667 | 392 | 0.4457 | 0.5450 | 0.4457 | 0.6676 |
248
+ | No log | 32.8333 | 394 | 0.4577 | 0.5368 | 0.4577 | 0.6765 |
249
+ | No log | 33.0 | 396 | 0.4660 | 0.5578 | 0.4660 | 0.6826 |
250
+ | No log | 33.1667 | 398 | 0.4684 | 0.5368 | 0.4684 | 0.6844 |
251
+ | No log | 33.3333 | 400 | 0.4645 | 0.5217 | 0.4645 | 0.6815 |
252
+ | No log | 33.5 | 402 | 0.4598 | 0.5286 | 0.4598 | 0.6781 |
253
+ | No log | 33.6667 | 404 | 0.4573 | 0.5383 | 0.4573 | 0.6763 |
254
+ | No log | 33.8333 | 406 | 0.4610 | 0.5840 | 0.4610 | 0.6789 |
255
+ | No log | 34.0 | 408 | 0.4600 | 0.5705 | 0.4600 | 0.6782 |
256
+ | No log | 34.1667 | 410 | 0.4616 | 0.5621 | 0.4616 | 0.6794 |
257
+ | No log | 34.3333 | 412 | 0.4640 | 0.5810 | 0.4640 | 0.6812 |
258
+ | No log | 34.5 | 414 | 0.4597 | 0.5701 | 0.4597 | 0.6780 |
259
+ | No log | 34.6667 | 416 | 0.4600 | 0.5434 | 0.4600 | 0.6782 |
260
+ | No log | 34.8333 | 418 | 0.4607 | 0.5419 | 0.4607 | 0.6787 |
261
+ | No log | 35.0 | 420 | 0.4568 | 0.5572 | 0.4568 | 0.6759 |
262
+ | No log | 35.1667 | 422 | 0.4618 | 0.5867 | 0.4618 | 0.6796 |
263
+ | No log | 35.3333 | 424 | 0.4683 | 0.6333 | 0.4683 | 0.6843 |
264
+ | No log | 35.5 | 426 | 0.4785 | 0.6156 | 0.4785 | 0.6917 |
265
+ | No log | 35.6667 | 428 | 0.4918 | 0.6156 | 0.4918 | 0.7013 |
266
+ | No log | 35.8333 | 430 | 0.4797 | 0.6170 | 0.4797 | 0.6926 |
267
+ | No log | 36.0 | 432 | 0.4668 | 0.5753 | 0.4668 | 0.6833 |
268
+ | No log | 36.1667 | 434 | 0.4694 | 0.5853 | 0.4694 | 0.6851 |
269
+ | No log | 36.3333 | 436 | 0.4761 | 0.6028 | 0.4761 | 0.6900 |
270
+ | No log | 36.5 | 438 | 0.4710 | 0.5840 | 0.4710 | 0.6863 |
271
+ | No log | 36.6667 | 440 | 0.4707 | 0.5840 | 0.4707 | 0.6861 |
272
+ | No log | 36.8333 | 442 | 0.4812 | 0.5840 | 0.4812 | 0.6937 |
273
+ | No log | 37.0 | 444 | 0.4824 | 0.6028 | 0.4824 | 0.6945 |
274
+ | No log | 37.1667 | 446 | 0.4860 | 0.6013 | 0.4860 | 0.6972 |
275
+ | No log | 37.3333 | 448 | 0.4976 | 0.6287 | 0.4976 | 0.7054 |
276
+ | No log | 37.5 | 450 | 0.5130 | 0.6137 | 0.5130 | 0.7163 |
277
+ | No log | 37.6667 | 452 | 0.4984 | 0.5941 | 0.4984 | 0.7060 |
278
+ | No log | 37.8333 | 454 | 0.4662 | 0.5628 | 0.4662 | 0.6828 |
279
+ | No log | 38.0 | 456 | 0.4529 | 0.5769 | 0.4529 | 0.6730 |
280
+ | No log | 38.1667 | 458 | 0.4466 | 0.5674 | 0.4466 | 0.6683 |
281
+ | No log | 38.3333 | 460 | 0.4420 | 0.5594 | 0.4420 | 0.6649 |
282
+ | No log | 38.5 | 462 | 0.4379 | 0.5707 | 0.4379 | 0.6617 |
283
+ | No log | 38.6667 | 464 | 0.4494 | 0.5841 | 0.4494 | 0.6704 |
284
+ | No log | 38.8333 | 466 | 0.4632 | 0.6169 | 0.4632 | 0.6806 |
285
+ | No log | 39.0 | 468 | 0.4599 | 0.6169 | 0.4599 | 0.6781 |
286
+ | No log | 39.1667 | 470 | 0.4552 | 0.6248 | 0.4552 | 0.6747 |
287
+ | No log | 39.3333 | 472 | 0.4546 | 0.6349 | 0.4546 | 0.6742 |
288
+ | No log | 39.5 | 474 | 0.4498 | 0.6156 | 0.4498 | 0.6707 |
289
+ | No log | 39.6667 | 476 | 0.4604 | 0.6349 | 0.4604 | 0.6785 |
290
+ | No log | 39.8333 | 478 | 0.4599 | 0.6156 | 0.4599 | 0.6782 |
291
+ | No log | 40.0 | 480 | 0.4479 | 0.5956 | 0.4479 | 0.6693 |
292
+ | No log | 40.1667 | 482 | 0.4437 | 0.5578 | 0.4437 | 0.6661 |
293
+ | No log | 40.3333 | 484 | 0.4416 | 0.5797 | 0.4416 | 0.6645 |
294
+ | No log | 40.5 | 486 | 0.4420 | 0.5866 | 0.4420 | 0.6648 |
295
+ | No log | 40.6667 | 488 | 0.4417 | 0.5915 | 0.4417 | 0.6646 |
296
+ | No log | 40.8333 | 490 | 0.4579 | 0.5918 | 0.4579 | 0.6766 |
297
+ | No log | 41.0 | 492 | 0.4746 | 0.5918 | 0.4746 | 0.6889 |
298
+ | No log | 41.1667 | 494 | 0.4645 | 0.5918 | 0.4645 | 0.6815 |
299
+ | No log | 41.3333 | 496 | 0.4429 | 0.5213 | 0.4429 | 0.6655 |
300
+ | No log | 41.5 | 498 | 0.4455 | 0.5719 | 0.4455 | 0.6675 |
301
+ | 0.2345 | 41.6667 | 500 | 0.4652 | 0.6599 | 0.4652 | 0.6821 |
302
+ | 0.2345 | 41.8333 | 502 | 0.4575 | 0.6438 | 0.4575 | 0.6764 |
303
+ | 0.2345 | 42.0 | 504 | 0.4488 | 0.5742 | 0.4488 | 0.6699 |
304
+ | 0.2345 | 42.1667 | 506 | 0.4536 | 0.5731 | 0.4536 | 0.6735 |
305
+ | 0.2345 | 42.3333 | 508 | 0.4614 | 0.6059 | 0.4614 | 0.6793 |
306
+ | 0.2345 | 42.5 | 510 | 0.4544 | 0.6133 | 0.4544 | 0.6741 |
307
+
308
+
309
+ ### Framework versions
310
+
311
+ - Transformers 4.44.2
312
+ - Pytorch 2.4.0+cu118
313
+ - Datasets 2.21.0
314
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "aubmindlab/bert-base-arabertv02",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "problem_type": "regression",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 64000
32
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bef723077795b1d6bd7799bcd020189b554aa64e57cea36c232705191425cadb
3
+ size 540799996
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec6592120bbcd74a181aad7e16e737e4a45a00269d12402e7aa1221a21e381f0
3
+ size 5240