MayBashendy commited on
Commit
d53a8c5
·
verified ·
1 Parent(s): f882f91

Training in progress, step 500

Browse files
Files changed (4) hide show
  1. README.md +314 -0
  2. config.json +32 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,314 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: aubmindlab/bert-base-arabertv02
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: ArabicNewSplits7_FineTuningAraBERT_run1_AugV5_k8_task3_organization
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # ArabicNewSplits7_FineTuningAraBERT_run1_AugV5_k8_task3_organization
15
+
16
+ This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.9318
19
+ - Qwk: -0.0339
20
+ - Mse: 0.9318
21
+ - Rmse: 0.9653
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 100
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
51
+ |:-------------:|:-------:|:----:|:---------------:|:-------:|:------:|:------:|
52
+ | No log | 0.0870 | 2 | 3.6212 | 0.0035 | 3.6212 | 1.9029 |
53
+ | No log | 0.1739 | 4 | 1.7889 | 0.0737 | 1.7889 | 1.3375 |
54
+ | No log | 0.2609 | 6 | 1.3489 | -0.0215 | 1.3489 | 1.1614 |
55
+ | No log | 0.3478 | 8 | 2.2428 | -0.0113 | 2.2428 | 1.4976 |
56
+ | No log | 0.4348 | 10 | 2.0145 | 0.0235 | 2.0145 | 1.4193 |
57
+ | No log | 0.5217 | 12 | 1.4285 | 0.0 | 1.4285 | 1.1952 |
58
+ | No log | 0.6087 | 14 | 1.2384 | 0.0 | 1.2384 | 1.1128 |
59
+ | No log | 0.6957 | 16 | 0.8800 | 0.0515 | 0.8800 | 0.9381 |
60
+ | No log | 0.7826 | 18 | 0.8095 | -0.0331 | 0.8095 | 0.8997 |
61
+ | No log | 0.8696 | 20 | 0.8433 | -0.0033 | 0.8433 | 0.9183 |
62
+ | No log | 0.9565 | 22 | 0.9599 | -0.0628 | 0.9599 | 0.9797 |
63
+ | No log | 1.0435 | 24 | 0.9210 | -0.0909 | 0.9210 | 0.9597 |
64
+ | No log | 1.1304 | 26 | 1.0419 | 0.0026 | 1.0419 | 1.0207 |
65
+ | No log | 1.2174 | 28 | 0.9926 | -0.0916 | 0.9927 | 0.9963 |
66
+ | No log | 1.3043 | 30 | 1.0815 | -0.0571 | 1.0815 | 1.0400 |
67
+ | No log | 1.3913 | 32 | 1.2557 | 0.0401 | 1.2557 | 1.1206 |
68
+ | No log | 1.4783 | 34 | 1.5538 | -0.0247 | 1.5538 | 1.2465 |
69
+ | No log | 1.5652 | 36 | 2.5734 | -0.0318 | 2.5734 | 1.6042 |
70
+ | No log | 1.6522 | 38 | 2.6665 | -0.0030 | 2.6665 | 1.6329 |
71
+ | No log | 1.7391 | 40 | 2.0046 | 0.0 | 2.0046 | 1.4158 |
72
+ | No log | 1.8261 | 42 | 1.4004 | 0.0 | 1.4004 | 1.1834 |
73
+ | No log | 1.9130 | 44 | 1.0037 | 0.0 | 1.0037 | 1.0019 |
74
+ | No log | 2.0 | 46 | 0.8893 | 0.1374 | 0.8893 | 0.9430 |
75
+ | No log | 2.0870 | 48 | 0.9245 | 0.0596 | 0.9245 | 0.9615 |
76
+ | No log | 2.1739 | 50 | 1.3093 | 0.0 | 1.3093 | 1.1442 |
77
+ | No log | 2.2609 | 52 | 1.4849 | 0.0 | 1.4849 | 1.2185 |
78
+ | No log | 2.3478 | 54 | 1.1258 | 0.0016 | 1.1258 | 1.0610 |
79
+ | No log | 2.4348 | 56 | 0.7550 | -0.0725 | 0.7550 | 0.8689 |
80
+ | No log | 2.5217 | 58 | 0.7208 | -0.1795 | 0.7208 | 0.8490 |
81
+ | No log | 2.6087 | 60 | 0.8373 | -0.1255 | 0.8373 | 0.9150 |
82
+ | No log | 2.6957 | 62 | 1.0336 | 0.0238 | 1.0336 | 1.0167 |
83
+ | No log | 2.7826 | 64 | 1.0134 | -0.0359 | 1.0134 | 1.0067 |
84
+ | No log | 2.8696 | 66 | 0.9683 | 0.0305 | 0.9683 | 0.9840 |
85
+ | No log | 2.9565 | 68 | 0.8050 | -0.0371 | 0.8050 | 0.8972 |
86
+ | No log | 3.0435 | 70 | 0.7519 | 0.0 | 0.7519 | 0.8671 |
87
+ | No log | 3.1304 | 72 | 0.7979 | 0.0 | 0.7979 | 0.8932 |
88
+ | No log | 3.2174 | 74 | 0.7412 | -0.0626 | 0.7412 | 0.8609 |
89
+ | No log | 3.3043 | 76 | 0.9539 | 0.0111 | 0.9539 | 0.9767 |
90
+ | No log | 3.3913 | 78 | 1.3607 | 0.0912 | 1.3607 | 1.1665 |
91
+ | No log | 3.4783 | 80 | 1.1116 | -0.0013 | 1.1116 | 1.0543 |
92
+ | No log | 3.5652 | 82 | 0.8019 | -0.0766 | 0.8019 | 0.8955 |
93
+ | No log | 3.6522 | 84 | 0.7711 | -0.0739 | 0.7711 | 0.8781 |
94
+ | No log | 3.7391 | 86 | 0.8001 | -0.0766 | 0.8001 | 0.8945 |
95
+ | No log | 3.8261 | 88 | 0.9295 | -0.0391 | 0.9295 | 0.9641 |
96
+ | No log | 3.9130 | 90 | 1.1742 | 0.0300 | 1.1742 | 1.0836 |
97
+ | No log | 4.0 | 92 | 1.1289 | 0.0666 | 1.1289 | 1.0625 |
98
+ | No log | 4.0870 | 94 | 0.8678 | -0.0218 | 0.8678 | 0.9316 |
99
+ | No log | 4.1739 | 96 | 0.9309 | 0.0748 | 0.9309 | 0.9648 |
100
+ | No log | 4.2609 | 98 | 0.9229 | 0.0307 | 0.9229 | 0.9607 |
101
+ | No log | 4.3478 | 100 | 0.8741 | -0.0132 | 0.8741 | 0.9350 |
102
+ | No log | 4.4348 | 102 | 1.0929 | -0.0187 | 1.0929 | 1.0454 |
103
+ | No log | 4.5217 | 104 | 1.0422 | -0.0870 | 1.0422 | 1.0209 |
104
+ | No log | 4.6087 | 106 | 0.8898 | -0.0734 | 0.8898 | 0.9433 |
105
+ | No log | 4.6957 | 108 | 0.9725 | 0.0154 | 0.9725 | 0.9862 |
106
+ | No log | 4.7826 | 110 | 0.9445 | 0.0101 | 0.9445 | 0.9719 |
107
+ | No log | 4.8696 | 112 | 0.9061 | 0.0265 | 0.9061 | 0.9519 |
108
+ | No log | 4.9565 | 114 | 1.2159 | 0.0367 | 1.2159 | 1.1027 |
109
+ | No log | 5.0435 | 116 | 1.3139 | 0.0312 | 1.3139 | 1.1463 |
110
+ | No log | 5.1304 | 118 | 1.0880 | -0.0163 | 1.0880 | 1.0431 |
111
+ | No log | 5.2174 | 120 | 0.9286 | 0.0725 | 0.9286 | 0.9636 |
112
+ | No log | 5.3043 | 122 | 0.9320 | -0.0256 | 0.9320 | 0.9654 |
113
+ | No log | 5.3913 | 124 | 0.9200 | 0.0741 | 0.9200 | 0.9592 |
114
+ | No log | 5.4783 | 126 | 0.9515 | -0.0262 | 0.9515 | 0.9755 |
115
+ | No log | 5.5652 | 128 | 1.0287 | -0.0056 | 1.0287 | 1.0143 |
116
+ | No log | 5.6522 | 130 | 0.9680 | -0.0812 | 0.9680 | 0.9839 |
117
+ | No log | 5.7391 | 132 | 0.8830 | 0.0840 | 0.8830 | 0.9397 |
118
+ | No log | 5.8261 | 134 | 0.9035 | 0.0757 | 0.9035 | 0.9505 |
119
+ | No log | 5.9130 | 136 | 0.8872 | 0.0798 | 0.8872 | 0.9419 |
120
+ | No log | 6.0 | 138 | 0.9132 | -0.0262 | 0.9132 | 0.9556 |
121
+ | No log | 6.0870 | 140 | 0.8792 | 0.0717 | 0.8792 | 0.9376 |
122
+ | No log | 6.1739 | 142 | 0.8709 | 0.0922 | 0.8709 | 0.9332 |
123
+ | No log | 6.2609 | 144 | 0.8538 | 0.2382 | 0.8538 | 0.9240 |
124
+ | No log | 6.3478 | 146 | 0.9235 | -0.0295 | 0.9235 | 0.9610 |
125
+ | No log | 6.4348 | 148 | 0.8988 | 0.0123 | 0.8988 | 0.9480 |
126
+ | No log | 6.5217 | 150 | 0.8067 | -0.0218 | 0.8067 | 0.8982 |
127
+ | No log | 6.6087 | 152 | 0.8053 | -0.0218 | 0.8053 | 0.8974 |
128
+ | No log | 6.6957 | 154 | 0.8103 | -0.0218 | 0.8103 | 0.9002 |
129
+ | No log | 6.7826 | 156 | 0.8295 | 0.1228 | 0.8295 | 0.9108 |
130
+ | No log | 6.8696 | 158 | 0.9546 | 0.0146 | 0.9546 | 0.9771 |
131
+ | No log | 6.9565 | 160 | 1.6672 | 0.0455 | 1.6672 | 1.2912 |
132
+ | No log | 7.0435 | 162 | 2.1888 | 0.0442 | 2.1888 | 1.4795 |
133
+ | No log | 7.1304 | 164 | 1.7845 | 0.0013 | 1.7845 | 1.3359 |
134
+ | No log | 7.2174 | 166 | 1.1720 | -0.1121 | 1.1720 | 1.0826 |
135
+ | No log | 7.3043 | 168 | 0.8510 | -0.1524 | 0.8510 | 0.9225 |
136
+ | No log | 7.3913 | 170 | 0.8100 | -0.0976 | 0.8100 | 0.9000 |
137
+ | No log | 7.4783 | 172 | 0.7811 | -0.0204 | 0.7811 | 0.8838 |
138
+ | No log | 7.5652 | 174 | 0.9316 | 0.0377 | 0.9316 | 0.9652 |
139
+ | No log | 7.6522 | 176 | 1.1077 | -0.0260 | 1.1077 | 1.0525 |
140
+ | No log | 7.7391 | 178 | 1.0031 | -0.0424 | 1.0031 | 1.0015 |
141
+ | No log | 7.8261 | 180 | 0.9136 | 0.1132 | 0.9136 | 0.9558 |
142
+ | No log | 7.9130 | 182 | 0.9567 | 0.1924 | 0.9567 | 0.9781 |
143
+ | No log | 8.0 | 184 | 0.9751 | 0.1051 | 0.9751 | 0.9875 |
144
+ | No log | 8.0870 | 186 | 1.2255 | 0.0827 | 1.2255 | 1.1070 |
145
+ | No log | 8.1739 | 188 | 1.3095 | 0.1030 | 1.3095 | 1.1443 |
146
+ | No log | 8.2609 | 190 | 1.1899 | 0.0421 | 1.1899 | 1.0908 |
147
+ | No log | 8.3478 | 192 | 1.0328 | -0.0595 | 1.0328 | 1.0163 |
148
+ | No log | 8.4348 | 194 | 0.9221 | 0.0134 | 0.9221 | 0.9603 |
149
+ | No log | 8.5217 | 196 | 0.8606 | -0.0426 | 0.8606 | 0.9277 |
150
+ | No log | 8.6087 | 198 | 0.8648 | 0.0282 | 0.8648 | 0.9300 |
151
+ | No log | 8.6957 | 200 | 0.9268 | 0.0159 | 0.9268 | 0.9627 |
152
+ | No log | 8.7826 | 202 | 1.0344 | 0.0989 | 1.0344 | 1.0171 |
153
+ | No log | 8.8696 | 204 | 0.9657 | 0.0504 | 0.9657 | 0.9827 |
154
+ | No log | 8.9565 | 206 | 0.8472 | 0.0759 | 0.8472 | 0.9204 |
155
+ | No log | 9.0435 | 208 | 0.8269 | 0.0949 | 0.8269 | 0.9093 |
156
+ | No log | 9.1304 | 210 | 0.8908 | 0.0307 | 0.8908 | 0.9438 |
157
+ | No log | 9.2174 | 212 | 0.8504 | 0.0501 | 0.8504 | 0.9222 |
158
+ | No log | 9.3043 | 214 | 0.9343 | -0.0287 | 0.9343 | 0.9666 |
159
+ | No log | 9.3913 | 216 | 1.0902 | -0.0071 | 1.0902 | 1.0441 |
160
+ | No log | 9.4783 | 218 | 1.0560 | -0.1159 | 1.0560 | 1.0276 |
161
+ | No log | 9.5652 | 220 | 0.9009 | 0.0277 | 0.9009 | 0.9492 |
162
+ | No log | 9.6522 | 222 | 0.8619 | 0.1277 | 0.8619 | 0.9284 |
163
+ | No log | 9.7391 | 224 | 0.8502 | 0.0723 | 0.8502 | 0.9221 |
164
+ | No log | 9.8261 | 226 | 0.9431 | 0.0159 | 0.9431 | 0.9711 |
165
+ | No log | 9.9130 | 228 | 1.0679 | 0.0377 | 1.0679 | 1.0334 |
166
+ | No log | 10.0 | 230 | 0.9722 | 0.0129 | 0.9722 | 0.9860 |
167
+ | No log | 10.0870 | 232 | 0.8895 | -0.0533 | 0.8895 | 0.9431 |
168
+ | No log | 10.1739 | 234 | 0.9306 | 0.0518 | 0.9306 | 0.9647 |
169
+ | No log | 10.2609 | 236 | 0.9431 | 0.0196 | 0.9431 | 0.9711 |
170
+ | No log | 10.3478 | 238 | 0.9004 | -0.0082 | 0.9004 | 0.9489 |
171
+ | No log | 10.4348 | 240 | 0.8807 | -0.1121 | 0.8807 | 0.9385 |
172
+ | No log | 10.5217 | 242 | 0.8919 | 0.0191 | 0.8919 | 0.9444 |
173
+ | No log | 10.6087 | 244 | 0.8642 | 0.0191 | 0.8642 | 0.9296 |
174
+ | No log | 10.6957 | 246 | 0.8544 | -0.0228 | 0.8544 | 0.9243 |
175
+ | No log | 10.7826 | 248 | 0.9003 | 0.0159 | 0.9003 | 0.9489 |
176
+ | No log | 10.8696 | 250 | 1.0864 | 0.0225 | 1.0864 | 1.0423 |
177
+ | No log | 10.9565 | 252 | 1.1481 | 0.0154 | 1.1481 | 1.0715 |
178
+ | No log | 11.0435 | 254 | 1.0126 | 0.0091 | 1.0126 | 1.0063 |
179
+ | No log | 11.1304 | 256 | 0.9096 | -0.1006 | 0.9096 | 0.9537 |
180
+ | No log | 11.2174 | 258 | 0.8746 | -0.0723 | 0.8746 | 0.9352 |
181
+ | No log | 11.3043 | 260 | 0.8300 | -0.0113 | 0.8300 | 0.9111 |
182
+ | No log | 11.3913 | 262 | 0.8167 | -0.0138 | 0.8167 | 0.9037 |
183
+ | No log | 11.4783 | 264 | 0.8430 | 0.0768 | 0.8430 | 0.9182 |
184
+ | No log | 11.5652 | 266 | 0.8749 | 0.0768 | 0.8749 | 0.9354 |
185
+ | No log | 11.6522 | 268 | 0.8584 | 0.0776 | 0.8584 | 0.9265 |
186
+ | No log | 11.7391 | 270 | 0.8343 | 0.0768 | 0.8343 | 0.9134 |
187
+ | No log | 11.8261 | 272 | 0.8053 | 0.0768 | 0.8053 | 0.8974 |
188
+ | No log | 11.9130 | 274 | 0.7906 | 0.0807 | 0.7906 | 0.8891 |
189
+ | No log | 12.0 | 276 | 0.8481 | 0.0759 | 0.8481 | 0.9209 |
190
+ | No log | 12.0870 | 278 | 0.8835 | -0.0287 | 0.8835 | 0.9399 |
191
+ | No log | 12.1739 | 280 | 0.8643 | -0.0054 | 0.8643 | 0.9297 |
192
+ | No log | 12.2609 | 282 | 0.8590 | 0.0426 | 0.8590 | 0.9268 |
193
+ | No log | 12.3478 | 284 | 0.8486 | 0.0759 | 0.8486 | 0.9212 |
194
+ | No log | 12.4348 | 286 | 0.8736 | -0.0778 | 0.8736 | 0.9346 |
195
+ | No log | 12.5217 | 288 | 0.8823 | -0.0790 | 0.8823 | 0.9393 |
196
+ | No log | 12.6087 | 290 | 0.8469 | -0.0790 | 0.8469 | 0.9203 |
197
+ | No log | 12.6957 | 292 | 0.8292 | -0.0287 | 0.8292 | 0.9106 |
198
+ | No log | 12.7826 | 294 | 0.8180 | 0.0723 | 0.8180 | 0.9045 |
199
+ | No log | 12.8696 | 296 | 0.8426 | -0.0082 | 0.8426 | 0.9179 |
200
+ | No log | 12.9565 | 298 | 0.8837 | -0.0462 | 0.8837 | 0.9400 |
201
+ | No log | 13.0435 | 300 | 0.9255 | 0.0441 | 0.9255 | 0.9620 |
202
+ | No log | 13.1304 | 302 | 0.9180 | -0.0462 | 0.9180 | 0.9581 |
203
+ | No log | 13.2174 | 304 | 0.9037 | -0.0462 | 0.9037 | 0.9506 |
204
+ | No log | 13.3043 | 306 | 0.9477 | -0.1394 | 0.9477 | 0.9735 |
205
+ | No log | 13.3913 | 308 | 0.9962 | -0.0711 | 0.9962 | 0.9981 |
206
+ | No log | 13.4783 | 310 | 1.0017 | -0.0778 | 1.0017 | 1.0008 |
207
+ | No log | 13.5652 | 312 | 0.9773 | -0.0778 | 0.9773 | 0.9886 |
208
+ | No log | 13.6522 | 314 | 0.9374 | -0.0812 | 0.9374 | 0.9682 |
209
+ | No log | 13.7391 | 316 | 0.8390 | -0.0264 | 0.8390 | 0.9160 |
210
+ | No log | 13.8261 | 318 | 0.8357 | -0.0264 | 0.8357 | 0.9142 |
211
+ | No log | 13.9130 | 320 | 0.8226 | -0.0215 | 0.8226 | 0.9070 |
212
+ | No log | 14.0 | 322 | 0.8445 | 0.0375 | 0.8445 | 0.9190 |
213
+ | No log | 14.0870 | 324 | 0.8737 | -0.0628 | 0.8737 | 0.9347 |
214
+ | No log | 14.1739 | 326 | 0.9971 | -0.0371 | 0.9971 | 0.9986 |
215
+ | No log | 14.2609 | 328 | 1.1004 | -0.0768 | 1.1004 | 1.0490 |
216
+ | No log | 14.3478 | 330 | 0.9911 | -0.0767 | 0.9911 | 0.9956 |
217
+ | No log | 14.4348 | 332 | 0.9162 | -0.0086 | 0.9162 | 0.9572 |
218
+ | No log | 14.5217 | 334 | 0.9527 | -0.0148 | 0.9527 | 0.9761 |
219
+ | No log | 14.6087 | 336 | 0.9217 | -0.0193 | 0.9217 | 0.9600 |
220
+ | No log | 14.6957 | 338 | 0.8693 | -0.0643 | 0.8693 | 0.9324 |
221
+ | No log | 14.7826 | 340 | 1.0302 | 0.0333 | 1.0302 | 1.0150 |
222
+ | No log | 14.8696 | 342 | 1.1968 | -0.0870 | 1.1968 | 1.0940 |
223
+ | No log | 14.9565 | 344 | 1.1748 | -0.0551 | 1.1748 | 1.0839 |
224
+ | No log | 15.0435 | 346 | 1.0644 | 0.0316 | 1.0644 | 1.0317 |
225
+ | No log | 15.1304 | 348 | 0.9241 | 0.0043 | 0.9241 | 0.9613 |
226
+ | No log | 15.2174 | 350 | 0.9083 | -0.0672 | 0.9083 | 0.9530 |
227
+ | No log | 15.3043 | 352 | 0.9184 | -0.0614 | 0.9184 | 0.9584 |
228
+ | No log | 15.3913 | 354 | 0.9645 | -0.0630 | 0.9645 | 0.9821 |
229
+ | No log | 15.4783 | 356 | 1.0531 | -0.0376 | 1.0531 | 1.0262 |
230
+ | No log | 15.5652 | 358 | 1.0105 | -0.1148 | 1.0105 | 1.0052 |
231
+ | No log | 15.6522 | 360 | 0.9148 | -0.0656 | 0.9148 | 0.9565 |
232
+ | No log | 15.7391 | 362 | 0.8439 | 0.0303 | 0.8439 | 0.9187 |
233
+ | No log | 15.8261 | 364 | 0.8140 | 0.0303 | 0.8140 | 0.9022 |
234
+ | No log | 15.9130 | 366 | 0.8171 | 0.0303 | 0.8171 | 0.9040 |
235
+ | No log | 16.0 | 368 | 0.8283 | 0.0768 | 0.8283 | 0.9101 |
236
+ | No log | 16.0870 | 370 | 0.8518 | 0.0759 | 0.8518 | 0.9229 |
237
+ | No log | 16.1739 | 372 | 0.8496 | 0.0768 | 0.8496 | 0.9218 |
238
+ | No log | 16.2609 | 374 | 0.8508 | 0.0768 | 0.8508 | 0.9224 |
239
+ | No log | 16.3478 | 376 | 0.8751 | -0.0138 | 0.8751 | 0.9355 |
240
+ | No log | 16.4348 | 378 | 0.8855 | 0.0768 | 0.8855 | 0.9410 |
241
+ | No log | 16.5217 | 380 | 0.8692 | 0.0303 | 0.8692 | 0.9323 |
242
+ | No log | 16.6087 | 382 | 0.8537 | 0.0303 | 0.8537 | 0.9240 |
243
+ | No log | 16.6957 | 384 | 0.8622 | -0.0252 | 0.8622 | 0.9285 |
244
+ | No log | 16.7826 | 386 | 0.8896 | -0.0274 | 0.8896 | 0.9432 |
245
+ | No log | 16.8696 | 388 | 0.8958 | -0.0672 | 0.8958 | 0.9465 |
246
+ | No log | 16.9565 | 390 | 0.9135 | 0.0359 | 0.9135 | 0.9558 |
247
+ | No log | 17.0435 | 392 | 0.9115 | -0.0079 | 0.9115 | 0.9547 |
248
+ | No log | 17.1304 | 394 | 0.9087 | -0.0672 | 0.9087 | 0.9532 |
249
+ | No log | 17.2174 | 396 | 0.8924 | -0.0672 | 0.8924 | 0.9447 |
250
+ | No log | 17.3043 | 398 | 0.8682 | -0.0672 | 0.8682 | 0.9318 |
251
+ | No log | 17.3913 | 400 | 0.8374 | -0.0658 | 0.8374 | 0.9151 |
252
+ | No log | 17.4783 | 402 | 0.8321 | -0.0658 | 0.8321 | 0.9122 |
253
+ | No log | 17.5652 | 404 | 0.8612 | -0.0252 | 0.8612 | 0.9280 |
254
+ | No log | 17.6522 | 406 | 0.9139 | 0.0129 | 0.9139 | 0.9560 |
255
+ | No log | 17.7391 | 408 | 0.9524 | 0.0549 | 0.9524 | 0.9759 |
256
+ | No log | 17.8261 | 410 | 0.9282 | 0.0129 | 0.9282 | 0.9634 |
257
+ | No log | 17.9130 | 412 | 0.9208 | -0.0287 | 0.9208 | 0.9596 |
258
+ | No log | 18.0 | 414 | 0.8991 | -0.0672 | 0.8991 | 0.9482 |
259
+ | No log | 18.0870 | 416 | 0.9072 | -0.0718 | 0.9072 | 0.9525 |
260
+ | No log | 18.1739 | 418 | 0.9189 | -0.0718 | 0.9189 | 0.9586 |
261
+ | No log | 18.2609 | 420 | 0.9111 | -0.0778 | 0.9111 | 0.9545 |
262
+ | No log | 18.3478 | 422 | 0.9089 | -0.0778 | 0.9089 | 0.9534 |
263
+ | No log | 18.4348 | 424 | 0.8770 | -0.0287 | 0.8770 | 0.9365 |
264
+ | No log | 18.5217 | 426 | 0.8794 | -0.0252 | 0.8794 | 0.9377 |
265
+ | No log | 18.6087 | 428 | 0.9114 | -0.1521 | 0.9114 | 0.9547 |
266
+ | No log | 18.6957 | 430 | 0.9651 | -0.0357 | 0.9651 | 0.9824 |
267
+ | No log | 18.7826 | 432 | 1.0051 | 0.0494 | 1.0051 | 1.0025 |
268
+ | No log | 18.8696 | 434 | 0.9829 | 0.0049 | 0.9829 | 0.9914 |
269
+ | No log | 18.9565 | 436 | 0.9528 | -0.0426 | 0.9528 | 0.9761 |
270
+ | No log | 19.0435 | 438 | 0.9600 | -0.1038 | 0.9600 | 0.9798 |
271
+ | No log | 19.1304 | 440 | 1.0222 | 0.0363 | 1.0222 | 1.0110 |
272
+ | No log | 19.2174 | 442 | 1.0264 | 0.0363 | 1.0264 | 1.0131 |
273
+ | No log | 19.3043 | 444 | 0.9475 | 0.0549 | 0.9475 | 0.9734 |
274
+ | No log | 19.3913 | 446 | 0.9082 | 0.0123 | 0.9082 | 0.9530 |
275
+ | No log | 19.4783 | 448 | 0.9192 | -0.0240 | 0.9192 | 0.9587 |
276
+ | No log | 19.5652 | 450 | 0.9199 | -0.1454 | 0.9199 | 0.9591 |
277
+ | No log | 19.6522 | 452 | 0.9219 | -0.1454 | 0.9219 | 0.9602 |
278
+ | No log | 19.7391 | 454 | 0.9240 | -0.0230 | 0.9240 | 0.9613 |
279
+ | No log | 19.8261 | 456 | 0.9342 | 0.0113 | 0.9342 | 0.9666 |
280
+ | No log | 19.9130 | 458 | 0.9493 | 0.0504 | 0.9493 | 0.9743 |
281
+ | No log | 20.0 | 460 | 0.9171 | 0.0504 | 0.9171 | 0.9576 |
282
+ | No log | 20.0870 | 462 | 0.8782 | -0.0178 | 0.8782 | 0.9371 |
283
+ | No log | 20.1739 | 464 | 0.8668 | -0.0391 | 0.8668 | 0.9310 |
284
+ | No log | 20.2609 | 466 | 0.8540 | -0.0947 | 0.8540 | 0.9241 |
285
+ | No log | 20.3478 | 468 | 0.8477 | -0.0195 | 0.8477 | 0.9207 |
286
+ | No log | 20.4348 | 470 | 0.8587 | 0.0525 | 0.8587 | 0.9267 |
287
+ | No log | 20.5217 | 472 | 0.8761 | 0.0525 | 0.8761 | 0.9360 |
288
+ | No log | 20.6087 | 474 | 0.8477 | 0.0639 | 0.8477 | 0.9207 |
289
+ | No log | 20.6957 | 476 | 0.8504 | 0.1612 | 0.8504 | 0.9222 |
290
+ | No log | 20.7826 | 478 | 0.8755 | -0.0163 | 0.8755 | 0.9357 |
291
+ | No log | 20.8696 | 480 | 0.9182 | 0.0327 | 0.9182 | 0.9582 |
292
+ | No log | 20.9565 | 482 | 0.9653 | 0.0301 | 0.9653 | 0.9825 |
293
+ | No log | 21.0435 | 484 | 1.0251 | -0.0595 | 1.0251 | 1.0125 |
294
+ | No log | 21.1304 | 486 | 1.0607 | 0.0316 | 1.0607 | 1.0299 |
295
+ | No log | 21.2174 | 488 | 1.0275 | 0.0036 | 1.0275 | 1.0136 |
296
+ | No log | 21.3043 | 490 | 0.9308 | 0.0574 | 0.9308 | 0.9648 |
297
+ | No log | 21.3913 | 492 | 0.8212 | 0.0303 | 0.8212 | 0.9062 |
298
+ | No log | 21.4783 | 494 | 0.7970 | -0.0506 | 0.7970 | 0.8928 |
299
+ | No log | 21.5652 | 496 | 0.7728 | -0.0091 | 0.7728 | 0.8791 |
300
+ | No log | 21.6522 | 498 | 0.7648 | 0.0863 | 0.7648 | 0.8745 |
301
+ | 0.2992 | 21.7391 | 500 | 0.8489 | 0.0588 | 0.8489 | 0.9214 |
302
+ | 0.2992 | 21.8261 | 502 | 0.9334 | 0.0424 | 0.9334 | 0.9661 |
303
+ | 0.2992 | 21.9130 | 504 | 0.9420 | 0.0490 | 0.9420 | 0.9706 |
304
+ | 0.2992 | 22.0 | 506 | 0.9078 | 0.0303 | 0.9078 | 0.9528 |
305
+ | 0.2992 | 22.0870 | 508 | 0.9262 | -0.0373 | 0.9262 | 0.9624 |
306
+ | 0.2992 | 22.1739 | 510 | 0.9318 | -0.0339 | 0.9318 | 0.9653 |
307
+
308
+
309
+ ### Framework versions
310
+
311
+ - Transformers 4.44.2
312
+ - Pytorch 2.4.0+cu118
313
+ - Datasets 2.21.0
314
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "aubmindlab/bert-base-arabertv02",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "problem_type": "regression",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 64000
32
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0028a5943c9daa8bc36c78dc9fc02385fd9813cb3ef8203a93ba7bebac04e8b
3
+ size 540799996
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a9e8c24e270c301668f7a391eaee445da5a354ce2be28b220bd35668341237c
3
+ size 5240